{ "cells": [ { "cell_type": "markdown", "id": "f233bd54-261e-497a-9c91-f1b7a8031a70", "metadata": {}, "source": [ "# Example 9: Travel Time compared to Fluid Age" ] }, { "cell_type": "markdown", "id": "be3ffea4-9cf2-4950-8f5a-b77c4d9d1210", "metadata": {}, "source": [ "This Example demonstrates how to create a matrix that depicts the travel times between all nodes in a network via a Python algorithm using dataframes provided by PT3S and compares theses results to the fluid age result that is calculated by SIR 3S." ] }, { "cell_type": "markdown", "id": "43d7f90d", "metadata": {}, "source": [ "Fluid age is a result calculated for each node in SIR 3S. \n", "It describes the amount of time water has spent in the network since leaving a source until reaching a node." ] }, { "cell_type": "markdown", "id": "f0e59897-8e57-4f82-857b-a8698a5748c4", "metadata": {}, "source": [ "# PT3S Release" ] }, { "cell_type": "code", "execution_count": 1, "id": "931e173f-f062-4a80-a56f-0d96d5c27092", "metadata": { "tags": [] }, "outputs": [], "source": [ "#pip install PT3S -U --no-deps" ] }, { "cell_type": "markdown", "id": "fcf2b2a3-cecb-4679-a0b0-983d2a147e44", "metadata": {}, "source": [ "# Necessary packages for this Example" ] }, { "cell_type": "raw", "id": "f37aa62b-ae29-42a1-8217-2498db422b36", "metadata": {}, "source": [ "When running this example for the first time on your machine, please execute the cell below. Afterward, you may need to restart the kernel (using the ‘fast-forward’ button)." ] }, { "cell_type": "code", "execution_count": 2, "id": "0730d039-0023-4545-9295-7e18a8a12dba", "metadata": {}, "outputs": [], "source": [ "#pip install - q ..." ] }, { "cell_type": "markdown", "id": "a2e6fbdc-5dd6-482b-a353-2b6f10e07aab", "metadata": {}, "source": [ "# Imports" ] }, { "cell_type": "code", "execution_count": 3, "id": "59415417-7808-4e32-a2a2-abcde79ff631", "metadata": {}, "outputs": [], "source": [ "import os\n", "import logging\n", "import re\n", "import pandas as pd\n", "import numpy as np\n", "import pandas as pd\n", "from matplotlib.cm import get_cmap\n", "from shapely.geometry import LineString\n", "import matplotlib.pyplot as plt\n", "from collections import deque\n", "from matplotlib.collections import LineCollection\n", "import networkx\n", "from scipy.sparse import csc_matrix\n", "from pandas import Timestamp\n", "#...\n", "\n", "try:\n", " from PT3S import dxAndMxHelperFcts\n", "except:\n", " import dxAndMxHelperFcts\n", "\n", "try:\n", " from PT3S import Rm\n", "except:\n", " import Rm\n", "\n", "try:\n", " from PT3S import ncd\n", "except:\n", " import ncd\n", "#..." ] }, { "cell_type": "code", "execution_count": 4, "id": "0e412b0f-15a9-4d1b-9841-34a10e25b0b3", "metadata": { "tags": [] }, "outputs": [], "source": [ "import importlib\n", "from importlib import resources" ] }, { "cell_type": "code", "execution_count": 5, "id": "8ead8811-6d1d-4376-88ba-8ac748284e77", "metadata": { "tags": [] }, "outputs": [], "source": [ "#importlib.reload(dxAndMxHelperFcts)" ] }, { "cell_type": "markdown", "id": "bd5882d4-eab8-4da6-8bbe-6776d4195dd2", "metadata": {}, "source": [ "# Logging" ] }, { "cell_type": "code", "execution_count": 6, "id": "852d5593-37d0-4ccb-be1f-29154bdc142f", "metadata": {}, "outputs": [], "source": [ "logger = logging.getLogger() \n", "\n", "logFileName= r\"Example9.log\" \n", "\n", "loglevel = logging.DEBUG\n", "logging.basicConfig(filename=logFileName\n", " ,filemode='w'\n", " ,level=loglevel\n", " ,format=\"%(asctime)s ; %(name)-60s ; %(levelname)-7s ; %(message)s\") \n", "\n", "fileHandler = logging.FileHandler(logFileName) \n", "\n", "logger.addHandler(fileHandler)\n", "\n", "consoleHandler = logging.StreamHandler()\n", "consoleHandler.setFormatter(logging.Formatter(\"%(levelname)-7s ; %(message)s\"))\n", "consoleHandler.setLevel(logging.INFO)\n", "logger.addHandler(consoleHandler)" ] }, { "cell_type": "markdown", "id": "7c5430ed", "metadata": {}, "source": [ "# Branched Network" ] }, { "cell_type": "code", "execution_count": 7, "id": "b8de84e8", "metadata": {}, "outputs": [], "source": [ "dbFilename=\"Example9_1\"" ] }, { "cell_type": "code", "execution_count": 8, "id": "d32aabd0", "metadata": {}, "outputs": [], "source": [ "dbFile = resources.files(\"PT3S\").joinpath(\"Examples\", f\"{dbFilename}.db3\")" ] }, { "cell_type": "code", "execution_count": null, "id": "20f2e2d5", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO ; Dx.__init__: dbFile (abspath): c:\\users\\aUserName\\3s\\pt3s\\PT3S\\Examples\\Example9_1.db3 exists readable ...\n", "INFO ; Dx.__init__: SYSTEMKONFIG ID 3 not defined. Value(ID=3) is supposed to define the Model which is used in QGIS. Now QGISmodelXk is undefined ...\n", "INFO ; PT3S.dxAndMxHelperFcts.readDxAndMx: QGISmodelXk not defined. Now the MX of 1st Model in VIEW_MODELLE is used ...\n", "INFO ; PT3S.dxAndMxHelperFcts.readDxAndMx: \n", "+..\\PT3S\\Examples\\Example9_1.db3 is newer than\n", "+..\\PT3S\\Examples\\WDExample7_2\\B1\\V0\\BZ1\\M-1-0-1.1.MX1:\n", "+SIR 3S' dbFile is newer than SIR 3S' mx1File\n", "+in this case the results are maybe dated or (worse) incompatible to the model\n", "INFO ; PT3S.dxAndMxHelperFcts.readDxAndMx: Model is being recalculated using C:\\3S\\SIR 3S\\SirCalc-90-14-02-12_Potsdam.fix1_x64\\SirCalc.exe\n", "INFO ; Mx.setResultsToMxsFile: Mxs: ..\\PT3S\\Examples\\WDExample7_2\\B1\\V0\\BZ1\\M-1-0-1.1.MXS reading ...\n", "INFO ; dxWithMx.__init__: Example9_1: processing dx and mx ...\n" ] } ], "source": [ "m=dxAndMxHelperFcts.readDxAndMx(dbFile=dbFile\n", " ,preventPklDump=True\n", " ,maxRecords=-1\n", " #,SirCalcExePath=r\"C:\\3S\\SIR 3S\\SirCalc-90-14-02-12_Potsdam.fix1_x64\\SirCalc.exe\"\n", " ,crs=\"EPSG:25832\" # random EPSG\n", " )" ] }, { "cell_type": "markdown", "id": "7fdc286c", "metadata": {}, "source": [ "## SIR 3S results" ] }, { "cell_type": "markdown", "id": "ec21d556", "metadata": {}, "source": [ "### Preparing Data" ] }, { "cell_type": "code", "execution_count": 10, "id": "955c7e3f", "metadata": {}, "outputs": [], "source": [ "dfKNOT=m.V3_KNOT" ] }, { "cell_type": "code", "execution_count": 11, "id": "90367ad7", "metadata": {}, "outputs": [], "source": [ "dfROHR=m.gdf_ROHR" ] }, { "cell_type": "code", "execution_count": 12, "id": "a760ec70", "metadata": {}, "outputs": [], "source": [ "dfROHR=dfROHR.rename(columns={'fkKI': 'tki', 'fkKK': 'tkk'})" ] }, { "cell_type": "markdown", "id": "36b0370a", "metadata": {}, "source": [ "#### Fluid age" ] }, { "cell_type": "code", "execution_count": 13, "id": "343307e8", "metadata": {}, "outputs": [], "source": [ "# Build lookup Series from dfKNOT\n", "lookup_TTR = dfKNOT.set_index('pk')['TTR']" ] }, { "cell_type": "code", "execution_count": 14, "id": "56a1a936", "metadata": {}, "outputs": [], "source": [ "# Map fkKI and fkKK to TTR\n", "dfROHR['TTR_KI'] = dfROHR['tki'].map(lookup_TTR)\n", "dfROHR['TTR_KK'] = dfROHR['tkk'].map(lookup_TTR)" ] }, { "cell_type": "markdown", "id": "67055729", "metadata": {}, "source": [ "#### Node coords" ] }, { "cell_type": "code", "execution_count": 15, "id": "9521261d", "metadata": {}, "outputs": [], "source": [ "lookup_XKOR = dfKNOT.set_index('pk')['XKOR']\n", "lookup_YKOR = dfKNOT.set_index('pk')['YKOR']" ] }, { "cell_type": "code", "execution_count": 16, "id": "2c852c43", "metadata": {}, "outputs": [], "source": [ "# Map fkKI and fkKK to XKOR\n", "dfROHR['XKOR_KI'] = dfROHR['tki'].map(lookup_XKOR)\n", "dfROHR['XKOR_KK'] = dfROHR['tkk'].map(lookup_XKOR)" ] }, { "cell_type": "code", "execution_count": 17, "id": "419d3c3f", "metadata": {}, "outputs": [], "source": [ "# Map fkKI and fkKK to YKOR\n", "dfROHR['YKOR_KI'] = dfROHR['tki'].map(lookup_YKOR)\n", "dfROHR['YKOR_KK'] = dfROHR['tkk'].map(lookup_YKOR)" ] }, { "cell_type": "markdown", "id": "266b1e4e", "metadata": {}, "source": [ "#### dt" ] }, { "cell_type": "code", "execution_count": 18, "id": "4040f73b", "metadata": {}, "outputs": [], "source": [ "dt=('STAT',\n", " 'ROHR~*~*~*~DTTR',\n", " Timestamp('2025-06-05 13:27:46'),\n", " Timestamp('2025-06-05 13:27:46'))" ] }, { "cell_type": "code", "execution_count": 19, "id": "1bf7b660", "metadata": {}, "outputs": [], "source": [ "dfROHR=dfROHR.rename(columns={dt: 'dt'})" ] }, { "cell_type": "code", "execution_count": 20, "id": "36967144", "metadata": {}, "outputs": [], "source": [ "#dfROHR['dt']=dfROHR['dt']*3600" ] }, { "cell_type": "markdown", "id": "7c68e659", "metadata": {}, "source": [ "#### v" ] }, { "cell_type": "code", "execution_count": 21, "id": "22dc3f48", "metadata": {}, "outputs": [], "source": [ "v=('STAT',\n", " 'ROHR~*~*~*~VAV',\n", " Timestamp('2025-06-05 13:27:46'),\n", " Timestamp('2025-06-05 13:27:46'))" ] }, { "cell_type": "code", "execution_count": 22, "id": "f0043b09", "metadata": {}, "outputs": [], "source": [ "dfROHR=dfROHR.rename(columns={v:'v'})" ] }, { "cell_type": "code", "execution_count": 23, "id": "2a31dd33", "metadata": {}, "outputs": [], "source": [ "dfROHR['dt']=dfROHR['L']/dfROHR['v']" ] }, { "cell_type": "markdown", "id": "a8eb2c1d", "metadata": {}, "source": [ "#### KVR" ] }, { "cell_type": "code", "execution_count": 24, "id": "f7552e95", "metadata": {}, "outputs": [], "source": [ "dfROHR['KVR_KI'] = 1\n", "dfROHR['KVR_KK'] = 1" ] }, { "cell_type": "markdown", "id": "4173309f", "metadata": {}, "source": [ "### Plotting" ] }, { "cell_type": "code", "execution_count": 25, "id": "ca37efb3", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABK8AAAOsCAYAAACMN5XEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACU60lEQVR4nOzdd3RUdd7H8c/MpJJKgDR6kQ4iRcHFAKKIKKICorIIiqwsILh2ESUsrt1VURGxBMGOqItSLCgdngUBBREEDC2Q0EwnbeY+f2BmCQmQMuVO8n6dM+eQmXvvfCe6kbz3/u61GIZhCAAAAAAAADAhq7cHAAAAAAAAAM6GeAUAAAAAAADTIl4BAAAAAADAtIhXAAAAAAAAMC3iFQAAAAAAAEyLeAUAAAAAAADTIl4BAAAAAADAtIhXAAAAAAAAMC3iFQAAAAAAAEyLeAUAwBnmzJkji8VS5uP+++93btekSRONGjWqUu8xatQoNWnSpFzbWiwWJSYmVup9vCExMfGs37/TH7179y73dtKp79npzwcEBKh58+a6//77lZmZWWKG5cuXl9h248aNztdGjRql0NDQcn2WyMhI5zEmTJjgsu8RAAAAys/P2wMAAGBWSUlJat26dYnn4uPjXXLsxx57TJMmTXLJsczmzjvvVP/+/Z1fHz58WDfeeKPuvvtu3Xrrrc7nCwoKFBAQcN7twsPDnX8ODg7W999/L0lKT0/Xp59+qhdeeEE///yzvvnmm1KzvPbaa+rcubPatGlTqc/y3XffqaioSD169KjU/gAAAKg64hUAAGfRvn17de3a1S3Hbt68uVuOawYNGjRQgwYNnF/v3btXktSoUSN17979rPuVZzur1Vritf79++v333/Xt99+q+TkZDVt2rTE9m3btj3ne56Pu/75AwAAoPxYNggAgIsULzcsjjDFipewLV++3PlcWcsGMzMzNWbMGNWpU0ehoaHq37+/fvvtt3K9d15enu677z516tRJERERioqKUo8ePfSf//yn1Lbp6ekaPXq0oqKiFBoaqmuuuUa///57mcsTd+3apVtvvVXR0dEKDAxUmzZt9Nprr5VrJk8pDkxpaWkV2m/37t0aMGCAQkND1bBhQ913333Kz893x4gAAACoAs68AgDgLOx2u4qKiko85+fnnv90Goah66+/XmvXrtXjjz+ubt26ac2aNbr66qvLtX9+fr5OnDih+++/X/Xr11dBQYG+++473XjjjUpKStJtt90mSXI4HBo4cKA2btyoxMREde7cWevWrSuxzK/Y9u3bdemll6pRo0Z64YUXFBsbq6+//loTJ07UsWPHNHXqVJd+DyorOTlZfn5+atasWbn3KSws1HXXXafRo0frvvvu08qVKzV9+nRFRETo8ccfd+O0AAAAqCjiFQAAZ1HWcrPCwkK3BKyvv/5aP/zwg15++WVNnDhRknTllVcqICBAjz766Hn3j4iIUFJSkvNru92uvn376o8//tBLL73kjFdLly7V6tWr9frrr2vs2LEl3ueRRx4pccx7771XYWFhWr16tfO6U1deeaXy8/P19NNPa+LEiapdu7ZLPn9FFAfFjIwMzZ8/X5999pkefvhhRUdHl/sYBQUFmjZtmoYOHSpJ6tu3rzZu3KgPPviAeAUAAGAyLBsEAOAs5s6dqw0bNpR4uOvMqx9++EGSNHz48BLPn37h8vOZP3++/vKXvyg0NFR+fn7y9/fX22+/rV9//dW5zYoVKyRJN910U4l9b7nllhJf5+XladmyZbrhhhtUq1YtFRUVOR8DBgxQXl6e1q9fX6HP6Ao5OTny9/eXv7+/6tatq7///e8aNmyY/vWvf1XoOBaLRQMHDizxXMeOHbVv3z5XjgsAAAAX4MwrAADOok2bNh67YPfx48fl5+enOnXqlHg+Nja2XPt/9tlnuummmzR06FA98MADio2NlZ+fn15//XW98847pd4nKiqqxP4xMTGl5ikqKtIrr7yiV155pcz3PHbsWLlmc6Xg4GCtXLlSkpSamqoXXnhBH374oTp27KiHH3643MepVauWgoKCSjwXGBiovLw8l84LAACAqiNeAQDgIsUx5MyLfpcn8tSpU0dFRUU6fvx4iYCVmpparvd+77331LRpU3388ceyWCzO58+cpfh9Tpw4USJgnfk+tWvXls1m04gRIzR+/Pgy3/PMO/t5gtVqLREUr7zySnXp0kXTpk3T8OHD1bBhQ4/PBAAAAPdi2SAAAC5SfPfAn3/+ucTzCxcuPO++ffr0kSS9//77JZ7/4IMPyvXeFotFAQEBJcJVampqqbsN9urVS5L08ccfl3j+o48+KvF1rVq11KdPH23evFkdO3ZU165dSz3OPEvMGwIDA/Xaa68pLy9PTzzxhLfHAQAAgBtw5hUAAC7SrVs3tWrVSvfff7+KiopUu3Ztff7551q9evV59+3Xr58SEhL04IMPKicnR127dtWaNWs0b968cr33tddeq88++0zjxo3TkCFDdODAAU2fPl1xcXHatWuXc7v+/fvrL3/5i+677z5lZmaqS5cuWrdunebOnSvp1JlNxV5++WX17NlTl112mf7+97+rSZMmysrK0u7du/Xll1/q+++/r+B3yD169eqlAQMGKCkpSQ8//LBXzggDAACA+3DmFQAALmKz2fTll1+qdevWGjt2rG677TYFBgbq1VdfPe++VqtVCxcu1PDhw/Xss8/q+uuv19q1a7V48eJyvfftt9+up59+WkuWLNGAAQP0zDPP6OGHHy51wXer1aovv/xSN998s55++mkNGjRIq1at0nvvvSdJioyMdG7btm1bbdq0Se3bt9eUKVPUr18/jR49Wp9++qn69u1b/m+MBzzzzDOy2+2aPn26t0cBAACAi1kMwzC8PQQAAPCuDz74QMOHD9eaNWt06aWXenucKlu+fLn69Omj7777Tr169ar0XSLtdrsMw5C/v7/Gjx9frhAJAAAA12LZIAAANcyHH36olJQUdejQQVarVevXr9dzzz2nhISEahGuTnfFFVdIkjZs2FCpO0fWqVNHGRkZrh4LAAAAFcCZVwAA1DBfffWVEhMTtXv3buXk5CguLk7XX3+9nnjiCYWHh3t7PJfIysrSzp07nV+3bdtWtWrVqvBxtmzZoqKiIklSdHS0GjVq5LIZAQAAUD7EKwAAAAAAAJgWF2wHAAAAAACAaRGvAAAAAAAAYFrEKwAAAAAAAJgW8QoAAAAAAACmRbwCAAAAAACAaRGvAAAAAAAAYFrEKwAAAAAAAJgW8QoAAAAAAACmRbwCAAAAAACAaRGvAAAAAAAAYFp+3h4AAAAAAFC92e12FRYWensMnMbf3182m83bYwDlQrwCAAAAALiFYRhKTU1Venq6t0dBGSIjIxUbGyuLxeLtUYBzIl4BAAAAANyiOFxFR0erVq1aVYokeXl5CgoKcuF0NZdhGMrNzdWRI0ckSXFxcV6eCDg34hUAAAAAwOXsdrszXNWpU6dKx9q1a5c6deqkn376SS1atHDRhDVbcHCwJOnIkSOKjo5mCSFMjQu2AwAAAABcrvgaV7Vq1arysebPn6/c3FzNnz+/ysfC/xT/s+F6ZDA74hUAAAAAwG1ccT2lTz/9VJGRkfr0009dMBGKca0r+AriFQAAAADAtH7//Xdt3rxZL774ojZt2qTk5GRvjwTAw4hXAAAAAADT+uyzz9SsWTONHDlSTZs21WeffebtkQB4GPEKAAAAAGBaCxYs0ODBg2WxWDR48GAtWLDA7e955MgR3XXXXWrUqJECAwMVGxurq666SuvWrXP7ewMojXgFAAAAADClgwcPav369Ro8eLAkafDgwVq3bp1SUlLc+r6DBw/WTz/9pHfffVe//fabFi5cqN69e+vEiRNue8+CggK3HRvwdRbDMAxvDwEAAAAAqF7y8vKUnJyspk2bKigoqMxtfvrpJ33yySdnPcYvv/yiH3/8Ufv27ZPVapXD4VCjRo3UrVs3tW3b9qz7DRs2TB07dqzU3Onp6apdu7aWL1+uXr16lbnN/v37dffdd2vZsmWyWq3q37+/XnnlFcXExEiSRo0apfT0dH3xxRfOfe655x5t2bJFy5cvlyT17t1b7du3V0BAgObOnat27dppxYoV+uWXX/Tggw9q1apVMgxDnTp10pw5c9S8eXNJUlJSkp599lklJyerSZMmmjhxosaNGyfpVAC79957tWDBAv3xxx+KjY3VXXfdpUceeaTMz1Gef0aAGfh5ewAAAAAAQM20Z88ePfPMM7Lb7erevbtCQ0NLbTN16lRZracWDVmtVk2dOlWffPKJ/vvf/5bYLjs7W+vXr5fNZlOXLl0qHa9CQ0MVGhqqL774Qt27d1dgYGCJ1w3D0PXXX6+QkBCtWLFCRUVFGjdunIYNG+YMU+X17rvv6u9//7vWrFkjwzCUkpKihIQE9e7dW99//73Cw8O1Zs0aFRUVSZLefPNNTZ06Va+++qouuugibd68WWPGjFFISIhGjhypGTNmaOHChfrkk0/UqFEjHThwQAcOHKjU9wEwE+IVAAAAAMArbrzxRq1evVq33HKLTpw4oddee02dO3c+5z5jxozRmDFjSjy3adMm3XzzzWrSpIk+/PBDde/evdIz+fn5ac6cORozZoxmzZqlzp07q1evXrr55pvVsWNHfffdd/r555+VnJyshg0bSpLmzZundu3aacOGDerWrVu536tFixZ69tlnnV9PnjxZERER+uijj+Tv7y9JatmypfP16dOn64UXXtCNN94oSWratKm2b9+uN954QyNHjtT+/ft1wQUXqGfPnrJYLGrcuHGlvw+AmXDNKwAAAACA13Tv3l1btmzRRRddpO7du+vFF19Uea9u43A49OKLL6p79+7q3LmztmzZUqVwVWzw4ME6dOiQFi5cqKuuukrLly9X586dNWfOHP36669q2LChM1xJUtu2bRUZGalff/21Qu/TtWvXEl9v2bJFl112mTNcne7o0aM6cOCARo8e7Tw7LDQ0VE888YT27Nkj6dRyxS1btqhVq1aaOHGivvnmm0p8esB8iFcAAAAAAK+KiIjQhx9+qFmzZmnKlCm65pprdOTIkXPuc+TIEV177bWaMmWK3njjDX344YeKiIhw2UxBQUG68sor9fjjj2vt2rUaNWqUpk6dKsMwZLFYSm1/+vNWq7VUgCssLCy1T0hISImvg4ODzzqPw+GQdGrp4JYtW5yPbdu2af369ZKkzp07Kzk5WdOnT9fJkyd10003aciQIRX74IAJEa8AAAAAAF5nsVh0xx13aNOmTTp8+LA6deqkrKysMrfNyspSp06ddPjwYW3atEm33357mUHJldq2baucnBy1bdtW+/fvL3Etqe3btysjI0Nt2rSRJNWrV0+HDx8usf+WLVvO+x4dO3bUqlWrygxdMTExql+/vn7//Xe1aNGixKNp06bO7cLDwzVs2DC9+eab+vjjj7VgwQK33iUR8ATiFQAAAADANIqXvBUUFJz1DnhBQUHKz8/XpEmT1KpVK5e+//Hjx3X55Zfrvffec17bav78+Xr22Wc1aNAgXXHFFerYsaOGDx+uTZs26b///a9uu+029erVy7kM8PLLL9fGjRs1d+5c7dq1S1OnTtW2bdvO+94TJkxQZmambr75Zm3cuFG7du3SvHnztHPnTklSYmKinnrqKb388sv67bfftHXrViUlJenf//63JOnFF1/URx99pB07dui3337T/PnzFRsbq8jISJd+jwBPI14BAAAAAExlwYIFGjRoUJnXfpIkf39/DRo0SAsWLHD5e4eGhuqSSy7Riy++qISEBLVv316PPfaYxowZo1dffVUWi0VffPGFateurYSEBF1xxRVq1qyZPv74Y+cxrrrqKj322GN68MEH1a1bN2VlZem2224773vXqVNH33//vbKzs9WrVy916dJFb775pvP7cOedd+qtt97SnDlz1KFDB/Xq1Utz5sxxnnkVGhqqZ555Rl27dlW3bt20d+9eLV682Hm3RsBXWYzyXgkPAAAAAIByysvLU3Jyspo2bXrWM6jKkpmZqXr16unzzz/XgAEDJEnvv/++pk+frscee0zDhw+XJC1atEg33nijjh49qvDwcLd8huqusv+MAE8jvwIAAAAATOOrr75SUFCQ+vbtq6ysLI0cOVKjRo1S586dNWrUKI0cOVJZWVm64oorFBQUpEWLFnl7ZABuRrwCAAAAAJjGggULNHDgQG3dulWdO3fW6tWrtWbNGn3wwQdavXq1Vq1apc6dO2vbtm269tpr3bJ0EIC5EK8AAAAAAKaQk5OjJUuWKDU1VZdeeqm6deumzZs36+KLL5YkXXLJJdq8ebO6deumHj16KDU1VUuWLFFubq6XJwfgTsQrAAAAAIApLF26VCdPntT69ev15ptv6v333y91PauIiAi9//77mj17tv7v//5Pubm5Wrp0qZcmBuAJxCsAAAAAgNtU5B5he/fu1cUXX6xNmzZp5MiRslgsZW5nsVg0atQo/fjjj7r44ouVnJzsqnFrFO7fBl/B3QYBAAAAAC5nt9v122+/KTo6WnXq1PH2OCjD8ePHdeTIEbVs2VI2m83b4wBn5eftAQAAAAAA1Y/NZlNkZKSOHDkiSapVq9ZZz6SCZxmGodzcXB05ckSRkZGEK5geZ14BAAAAANzCMAylpqYqPT3d26OgDJGRkYqNjSUqwvSIVwAAAAAAt7Lb7SosLPT2GDiNv78/Z1zBZxCvAAAAAAAAYFrcbRAAAAAAAACmRbwCAAAAAACAaRGvAAAAAAAAYFrEKwAAAAAAAJgW8QoAAAAAAACmRbwCAAAAAACAaRGvAAAAAAAAYFrEKwAAAAAAAJgW8QoAAAAAAACmRbwCAAAAAACAaRGvAAAAAAAAYFrEKwAAAAAAAJgW8QoAAAAAAACmRbwCAAAAAACAaRGvAAAAAAAAYFrEKwAAAAAAAJgW8QoAAAAAAACmRbwCAAAAAACAaRGvAAAAAAAAYFrEKwAAAAAAAJgW8QoAAAAAAACmRbwCAAAAAACAaRGvAAAAAAAAYFrEKwAAAAAAAJgW8QoAAAAAAACmRbwCAAAAAACAaRGvAAAAAAAAYFrEKwAAAAAAAJgW8QoAAAAAAACmRbwCAAAAAACAaRGvAAAAAAAAYFp+3h4AAAAAAADAbPLy8lRQUODtMUoJCAhQUFCQt8fwKOIVAAAAAADAafLy8tS0cahSj9i9PUopsbGxSk5OrlEBi3gFAAAAAABwmoKCAqUesWvfj00UHmaeKy5lZjnUuMteFRQUEK8AAAAAAABquvAwq8LDbN4eo8YjXgEAAAAAAJTBIUMOObw9hpNDhrdH8ArznPsGAAAAAAAAnIF4BQAAAAAAANNi2SAAAAAAAEAZ7IZDdhOt1LMb5lnC6EmceQUAAAAAAADTIl4BAAAAAADAtFg2CAAAAAAAUIZTdxs0z7pBM83iSZx5BQAAAAAAANMiXgEAAAAAAMC0WDYIAAAAAABQBoccMtP9/cw1jedw5hUAAAAAAABMi3gFAAAAAAAA02LZIAAAAAAAQBnshiG7YZ47/JlpFk/izCsAAAAAAACYFvEKAAAAAAAApsWyQQAAAAAAgDI4ZMgh8yzVM9MsnsSZVwAAAAAAADAt4hUAAAAAAABMi2WDAAAAAAAAZXDIkN1ES/VYNggAAAAAAACYDPEKAAAAAAAApsWyQQAAAAAAgDJwt0Fz4MwrAAAAAAAAmBbxCgAAAAAAAKbFskEAAAAAAIAy2A1DdsM8S/XMNIsnceYVAAAAAAAATIt4BQAAAAAAANNi2SAAAAAAAEAZHH8+zMJMs3gSZ14BAAAAAADAtIhXAAAAAAAAMC2WDQIAAAAAAJTBLkN2mecOf2aaxZM48woAAAAAAACmRbwCAAAAAACAabFsEAAAAAAAoAx249TDLMw0iydx5hUAAAAAAABMi3gFAAAAAAAA02LZIAAAAAAAQBkcfz7MwkyzeBJnXgEAAAAAAMC0iFcAAAAAAAAwLZYNAgAAAAAAlMEhi+yyeHsMJ4eJZvEkzrwCAAAAAACAaRGvAAAAAAAAYFrEKwAAAAAAgDI4DPM9KuL1119Xx44dFR4ervDwcPXo0UNLliw55z4rVqxQly5dFBQUpGbNmmnWrFlV+A66BvEKAAAAAACgGmrQoIGefvppbdy4URs3btTll1+uQYMG6Zdffilz++TkZA0YMECXXXaZNm/erMmTJ2vixIlasGCBhycvyWIYRgW7HQAAAAAAQPWVmZmpiIgIbfwlRqFh5jnvJzvLoa7t0pSRkaHw8PBKHSMqKkrPPfecRo8eXeq1hx56SAsXLtSvv/7qfG7s2LH66aeftG7dukrPXVXcbRAAAAAAAKAMdpPdbbB4lszMzBLPBwYGKjAw8Nz72u2aP3++cnJy1KNHjzK3Wbdunfr161fiuauuukpvv/22CgsL5e/vX4XpK888+RAAAAAAAADn1bBhQ0VERDgfTz311Fm33bp1q0JDQxUYGKixY8fq888/V9u2bcvcNjU1VTExMSWei4mJUVFRkY4dO+bSz1ARnHkFAAAAAADgQw4cOFBi2eC5zrpq1aqVtmzZovT0dC1YsEAjR47UihUrzhqwLJaSZ5oVX23qzOc9iXgFAAAAAABQBrMuGyy+e2B5BAQEqEWLFpKkrl27asOGDXr55Zf1xhtvlNo2NjZWqampJZ47cuSI/Pz8VKdOnSpOX3ksGwQAAAAAAKghDMNQfn5+ma/16NFD3377bYnnvvnmG3Xt2tVr17uSiFcAAAAAAADV0uTJk7Vq1Srt3btXW7du1aOPPqrly5dr+PDhkqRHHnlEt912m3P7sWPHat++fbr33nv166+/6p133tHbb7+t+++/31sfQRLLBgEAAAAAAMrkMCxyGOZZNljRWdLS0jRixAgdPnxYERER6tixo5YuXaorr7xSknT48GHt37/fuX3Tpk21ePFi/eMf/9Brr72m+Ph4zZgxQ4MHD3bp56goi1F85S0AAAAAAAAoMzNTERERWr0tXqFh5lm0lp3lUM/2h5SRkVHua15VB+b5JwAAAAAAAACcgWWDAAAAAAAAZTDr3QZrGs68AgAAAAAAgGkRrwAAAAAAAGBaLBsEAAAAAAAog11W2U103o/d2wN4iXn+CQAAAAAAAABnIF4BAAAAAADAtFg2CAAAAAAAUAbDsMhhmOcOf4aJZvEkzrwCAAAAAACAaRGvAAAAAAAAYFosGwQAAAAAACiDXRbZZZ6lemaaxZM48woAAAAAAACmRbwCAAAAAACAabFsEAAAAAAAoAx2wyq7YZ7zfuyGtyfwDvP8EwAAAAAAAADOQLwCAAAAAACAabFsEAAAAAAAoAwOWeQw0Xk/DtXMdYPm+ScAAAAAAAAAnIF4BQAAAAAAANNi2SAAAAAAAEAZ7LLILou3x3Ay0yyexJlXAAAAAAAAMC3iFQAAAAAAAEyLZYMAAAAAAABlsBtW2Q3znPdjN7jbIAAAAAAAAGAqxCsAAAAAAACYFssGAQAAAAAAyuCQRQ4T3eHPTLN4EmdeAQAAAAAAwLSIVwAAAAAAADAtlg0CAAAAAACUwSGr7CY678ch7jYIAAAAAAAAmArxCgAAAAAAAKbFskEAAAAAAIAy2A2r7IZ5zvuxGywbBAAAAAAAAEyFeAUAAAAAAADTYtkgAAAAAABAGRyyymGi83642yAAAAAAAABgMsQrAAAAAAAAmBbLBgEAAAAAAMpgNyyyGxZvj+Fkplk8iTOvAAAAAAAAYFrEKwAAAAAAAJgWywYBAAAAAADKYJdVdhOd92PnboMAAAAAAACAuRCvAAAAAAAAYFosGwQAAAAAACiDw7DKYZjnvB+HwbJBAAAAAAAAwFSIVwAAAAAAADAtlg0CAAAAAACUgbsNmoN5/gkAAAAAAAAAZyBeAQAAAAAAwLRYNggAAAAAAFAGhyS7YfH2GE4Obw/gJZx5BQAAAAAAANMiXgEAAAAAAMC0WDYIAAAAAABQBoescpjovB8zzeJJNfNTAwAAAAAAwCcQrwAAAAAAAGBaLBsEAAAAAAAog92wym6Y57wfM83iSTXzUwMAAAAAAMAnEK8AAAAAAABgWiwbBAAAAAAAKINDFjlk8fYYTmaaxZM48woAAAAAAACmRbwCAAAAAACAabFsEAAAAAAAoAzcbdAcauanBgAAAAAAgE8gXgEAAAAAAMC0WDYIAAAAAABQBrusspvovB8zzeJJNfNTAwAAAAAAwCcQrwAAAAAAAGBaLBsEAAAAAAAog8OwyGFYvD2Gk5lm8STOvAIAAAAAAIBpEa8AAAAAAABgWiwbBAAAAAAAKIPDZHcbdJhoFk+qmZ8aAAAAAAAAPoF4BQAAAAAAANNi2SAAAAAAAEAZHIZVDsM85/2YaRZPqpmfGgAAAAAAAD6BeAUAAAAAAADTYtkgAAAAAABAGeyyyC6Lt8dwMtMsnsSZVwAAAAAAADAt4hUAAAAAAABMi2WDAAAAAAAAZeBug+ZQMz81AAAAAAAAfALxCgAAAAAAAKZFvAIAAAAAwIMmTpyoJk2ayGKxaNu2bWVus3z5ctWqVUudOnVyPk6ePClJSk5OVpcuXdSpUyd16NBBQ4cO1R9//CFJ2rt3r+rWreuxz1Ld2fW/Ow6a41EzEa8AAAAAAHCxkydP6sCBAzp06JDs9pLJYciQIVq9erUaN258zmO0bdtWW7ZscT6Cg4MlSfHx8Vq9erW2bNmirVu3qn79+po+fbrbPgvgbVywHQAAAAAAF9jze7Jmfvixdhw5rtScPOVa/SUZijCKVD88VN2aNdL42/6qhISEKr1PYGCg8892u13Z2dmKjIwssc3jjz+uRYsWKSMjQzNmzNCAAQOq9J6ANxGvAAAAAACogvz8fD36/Iv6Zn+a8mMayBIZL0X+7/X0Px9bUzK18N7JGtWrh8YMv+W8x925c6c6d+4sm82m22+/XePGjXO+VlBQoIsvvlj79u3ThRdeqIULFzpfO378uLp06aJ//vOfWrp0qSZNmkS8qiTuNmgONfNTAwAAAADgAkeOHNX1E+/TwhyLCmIbyWI5+6/ZVv8AnYhvpn9v2qm/Pzr1nMft3LmzDh48qE2bNunzzz/XrFmz9MknnzhfDwgI0JYtW5SWlqZWrVpp1qxZztdCQkI0aNAgSVKPHj20Z8+eKn5KwLuIVwAAAAAAVEJeXp5umzJNv8c0ldU/oPw7hkXqe3uATmRknHWT8PBwRURESJIaNGigW265RatWrSq1XUBAgG6//XbNmzfP+VxQUJDzzzabrdQ1twBfQ7wCAAAAAKASHn3hJf1et+E5z7Y6G2tQiPLshr5bubrM1w8fPiyHwyFJysrK0ldffaWLLrpIkrR//37l5ORIkhwOhz755BN17Nixkp8C52I3rKZ71EQ181MDAAAAAFAFu/bs0Tf70ip2xtWf0hYv0J4Xp6kwO0sP3X+fWrRoIUm68847ndeuWrBggTp06KALL7xQ3bt315VXXqnbb79dkrRt2zb16NFDHTt2VMeOHXXs2DHNmDHDdR8OMBmLYRiGt4cAAAAAAMCX3PfkM/oqz69SZ12dzsj4Q8/1/4uu63+ViyaDK2RmZioiIkKPrOuvoFB/b4/jlJddqKd6LFVGRobCw8O9PY7HcOYVAAAAAADlUFRUpPT09FMXUk/eX+VwJUmWiNr6ftOWqg8HtzBkkcNED0MWb39LvMLP2wMAAAAAAGBGRUVFys7OVnZ2trKyspSbmyvp1IXaj+UXuex9UtKzXHYsoDoiXgEAAAAAoLPHqjOlp6crPyDIZUuZsvLyXHQkoHoiXgEAAAAAaqTyxqozWa2uvQKPK5Yfwj3Mdoc/M83iScQrAAAAAECNUNlYdaY6deoopCBPJ100V52QYBcdCaieiFcAAAAAgGrJVbHqTDabTXWD/HTABccyDEMNImrOXeOAyiBeAQAAAACqBXfFqrK0rltb+woLZPUPqNJxbEcPafhNt7toKriaw7DIYZjnDn9mmsWTiFcAAAAAAJ/kyVh1piFXXanVb7+vk03bVOk47YOs6tC+nYumAqon4hUAAAAAwCd4M1adKTQ0VANaNdX8Y3/IGl67csc4ckDT7hnr4smA6od4BQAAAAAwJTPFqrIMvvoq/f7OXP14MlDW4FoV2tfvj6O6q2c3tWnV0k3TwRXsssou89zhz0yzeBLxCgAAAABgCmaPVVarVaGhoQoNDVVYWJhCQkL03ssX6h/Tn9KyP47JHlm3XMcJPXJAd/XspjHDb3HzxED1QLwCAAAAAHiFL8Yqi6XkBbNtNptmJE7RZ4uWaNZXS7UvKEKWMpYRGoYh29HDah9kUeKku9S2dStPfQzA5xGvAAAAAAAeUR1i1dnceM3VumFAfy1culTfb/pZKX9kKCu/QFarRVG1gtUgMkLDh45Uxw7t3fwp4ErcbdAciFcAAAAAALeozrGqLBaLRYOuvlqDrr7ahVMCIF4BAAAAAFyipsUqAJ5BvAIAAAAAVAqxCtWdQ1Y5THSHPzPN4knEKwAAAABAuRCrAHgD8QoAAAAAUCZiFQAzIF4BAAAAACQRq4Az2Q2L7Ca6w5+ZZvEk4hUAAAAA1FDEKgC+gHgFAAAAADUEsQqALyJeAQAAAEA1RawCqsZhWOQw0VI9M83iScQrAAAAAKgmiFUAqiPiFQAAAAD4KGIVgJqAeAUAAAAAPoJYBXiWYVjlMKzeHsPJMNEsnkS8AgAAAACTIlYBAPEKAAAAAEyDWAUApRGvAAAAAMBLiFWAudllkV3m+XfeTLN4EvEKAAAAADyEWAUAFUe8AgAAAAA3IVYBQNURrwAAAADARYhVQPXiMCSHYZ7/jTgMb0/gHcQrAAAAAKgkYhUAM3vqqaf02WefaceOHQoODtall16qZ555Rq1atTrrPsuXL1efPn1KPf/rr7+qdevW7hz3rIhXAAAAAFBOxCoAvmTFihUaP368unXrpqKiIj366KPq16+ftm/frpCQkHPuu3PnToWHhzu/rlevnrvHPSviFQAAAACcBbEKqNkchlUOw+rtMZwqOsvSpUtLfJ2UlKTo6Gj9+OOPSkhIOOe+0dHRioyMrOiIbkG8AgAAAIA/EasA+ILMzMwSXwcGBiowMPC8+2VkZEiSoqKizrvtRRddpLy8PLVt21ZTpkwpcymhpxCvAAAAANRYxCoAvqhhw4Ylvp46daoSExPPuY9hGLr33nvVs2dPtW/f/qzbxcXFafbs2erSpYvy8/M1b9489e3bV8uXLz/v2VruQrwCAAAAUGMQqwBUhEMWOWSe/w0Wz3LgwIES16Mqz1lXEyZM0M8//6zVq1efc7tWrVqVuKB7jx49dODAAT3//PPEKwAAAAAoj127dmnkyJE6duyYIiMjNWfOHLVt27bMbYuKinTs2DElJCQoICBA7777rvO1uXPn6quvvpJhGGrcuLGmTp2qsLCwUsdITExUmzZtNGzYMJd/FmIVgMoIDw8vEa/O5+6779bChQu1cuVKNWjQoMLv1717d7333nsV3s9ViFcAAAAAfMpdd92lv/3tbxo1apQ+/fRTjR49WuvWrZNU9plVL774otq0aaNdu3Y5j7F+/XotWrRISUlJCgkJ0ezZszVz5kw99NBDbp2dWAXAkwzD0N13363PP/9cy5cvV9OmTSt1nM2bNysuLs7F05Uf8QoAAACAzzhy5Ig2bdqkb775RpI0aNAgjR8/XuvWrVNkZGSpZYCbN2/W/v37NXz4cL388svO53ft2qWLLrrIeav4yy67TGPHjj1rvEpOTta4ceOUmpqq5s2b68knn5S/v/955yVWAb7NblhkN8zzv9mKzjJ+/Hh98MEH+s9//qOwsDClpqZKkiIiIhQcHCxJeuSRR5SSkqK5c+dKkl566SU1adJE7dq1U0FBgd577z0tWLBACxYscO2HqQDiFQAAAACfkZycrNjYWKWmpjrPrKpbt662bdumzp07l9j25MmTeuGFF/Tvf/9b+/fvL/FamzZt9Nlnn+n48eOKiorS4sWLlZOTo4yMDEVERJR6399++00zZ86Uv7+/xowZo2XLlql///6ltiNWATCT119/XZLUu3fvEs8nJSVp1KhRkqTDhw+X+BlZUFCg+++/XykpKQoODla7du20aNEiDRgwwFNjl0K8AgAAAGBaZy4D3LVrlwoLC5WWlnbefV9++WUNHTpU0dHRpeJV165dNXz4cN1zzz2y2WzOW8D7+ZX9K1KfPn0UFBQkSWrXrp0OHjwoiVgFwNwMwzjvNnPmzCnx9YMPPqgHH3zQTRNVDvEKAAAAgGmc726AMTExSktLU1FRkfz8/GQYhtLS0hQbG1vqWFu2bNGaNWv01ltvqaCgQJmZmbrpppv0ySefSJKGDBmiIUOGSJK2bt2qmJgY5zLCMwUEBEg6FauCg4NVq1YttWrVilgFVHMOwyqHYfX2GE5mmsWTiFcAAAAAvOZ8sepMUVFRatWqlZYsWaKBAwdq2bJliouLU3x8fKltP/roI+efN27cqJdfflnz5s1zPnfs2DHVrVtXeXl5mjVrlkaMGFHqGFarVf7+/oqIiHDGqtq1azvPtgIAuB/xCgAAAIDHVDRWlWXy5MmaNm2a806BiYmJztemT5+uhIQE9erV67zHGT9+vAzDUGFhoQYMGKBhw4aVuQwwPDxcERERxCoA8BKLUZ4FkAAAAABQCa6IVe7ENasAlCUzM1MRERG6adkIBYQEeHscp4KcAn3Sd54yMjIUHh7u7XE8hjOvAAAAALgMsQoA4GrEKwAAAACVRqwCALgb8QoAAABAuRGrANQkhixyyDw/QwwTzeJJxCsAAAAAZ0WsAgB4G/EKAAAAgBOxCgBgNsQrAAAAoAYjVgHA2TkMixyGeX7mmGkWTyJeAQAAADUIsQoA4GuIVwAAAEA1RqwCAPg64hUAAABQjRCrAMB1HIZVDsPq7TGczDSLJxGvAAAAAB9GrAIAVHfEKwAAAMCHEKsAADUN8QoAAAAwMWIVAHgPdxs0B+IVAAAAYCLEKgAASiJeAQAAAF5ErAIA4NyIVwAAAIAHEasAwHc4ZJFD5vkZaKZZPIl4BQAAALgRsQoAgKohXgEAAAAuRKwCAMC1iFcAAABAFRCrAKD64m6D5kC8AgAAACqAWAUAgGcRrwAAAIBzIFYBAOBdxCsAAADgNMQqAEAxlg2aA/EKAAAANRqxCgAAcyNeAQAAoEYhVgEA4Fus3h4AAOA6u3bt0qWXXqqWLVvq4osv1vbt20ttYxiGHnjgAbVr104dO3ZUnz59tHv3bufrX331lVq3bq0WLVpo8ODBys7OliTt3btXdevW9dhnAQBJmjhxopo0aSKLxaJt27addbu3335bF1xwgZo3b66//e1vKioqcr5WVFSkP/74Qz179lTt2rX1008/ac+ePdq8ebN69OjhiY9xTlarVeHh4YqPj1erVq3UqVMnXXDBBYqLi1NoaCjhCgC8qHjZoJkeNRFnXgGAD7Db7UpJSdGKFWv0y9bfVFRkV3CtQP2lZ1d169ZVkZGRstlsuuuuu/S3v/1No0aN0qeffqrRo0dr3bp1JY61cOFCrVy5Ulu2bJG/v7+eeOIJTZ48WZ988omys7M1evRorVixQq1bt9aECRP0r3/9S0899ZSXPjmA6u7o0aP6fvlq/Z58ULJYVLdOhPr2/ouaNm0qi8WiIUOG6MEHH1TPnj3Peozk5GQ99thj2rx5s6Kjo3XdddfplVde0dChQ51nVn300UeqU6eODMPw4KcrG2dWAQBQMcQrADCxkydPaumSbzX/k290cG+2jMI6CgyIlMVik8NRpO+XfKWgkA/VomUdjRh1ozZt2qRvvvlGkjR48GBNmDBBe/fuVZMmTUocNz8/X3l5efLz81NmZqYaNGggSVqyZIm6du2q1q1bS5LGjRunAQMGlIhXjz/+uBYtWqSMjAzNmDFDAwYM8Mw3A0C1YRiGPv70P1r0zXrtPpAth189+QeGSJLsRZl66+MZql/Hop6XtNbd4+6Qv7//OY/3ySefaMCAASosLNSOHTt0xRVXaO7cuUpISJAk7d+/X998840SExO1YsWKUvvPmjVLq1evVnZ2tu6///5zhrLKIFYBAFA1xCsAMKGTJ0/qwIEDev7ZWdq5LU8B1ngFWiUF/m8bq9WmWoExUlGM9vzi0D8mPK3AwCDnWQUWi0WNGjXS/v37S8SrgQMHavny5YqNjVVYWJjq16/v/GVu//79aty4sXPbJk2aKCUlRQ6HQ5J0/PhxdenSRf/85z+1dOlSTZo0iXgFoELS0o7oocee085DgbIF1pUtpK5sp71u8wuQLbSBjuRLnyw7qpXr79Pkf4wqcYwzr1m1adMmxcTEKC0tTZIUHx/v/LPD4dATTzyhhx56SH5+pf/qm5GRodatW2vs2LFau3atnn/++SrHK2IVAFQfZluqZ6ZZPIl4BQAmcvLkSR0+fFhHjx7V00++ofTD8QrwizrvfhaLVVZHA2VnrdVjjz6lJ56cLD8/vzKXx2zatEk7duxQSkqKwsPD9fDDD2vChAmaM2fOn8c6+38QQ0JCNGjQIElSjx49tGfPnsp9UAA10v79BzT2H08pw2giW+D5L73q5x+kYwWN9NC/5ik396RSU1Nls9nKvMD66T+7Tv/ZN2/ePHXu3FmtWrXSoUOHSu0XHBys3r17S5I6duyolJSUCn8uYhUAAO5FvAIAEyiOVn/88Yckaear7yk9tb78/ALPs+f/BAVGKL8gR2uXH9Orr8zWxEljdeDAATVq1KjEdnPmzFGfPn0UGRkpSRo5cqTz7KlGjRrp+++/d267d+9e1a9fX1brqV8yg4KCnK/ZbDbZ7fZKfV4ANU9hYaEmPfSsMoymFQ47hX71lZmVqx07dqp27dqlXo+NjdXhw4edXx8+fFgxMTGSpM2bN2vXrl1atGiR7Ha7srKyNHDgQL3//vuSpICAAOd+Vqu1XD/XiFUAAHgW8QoAvOjMaCVJa9du0N7fLAqwlT9cSVKAf6jCQuJ0/MRBLVyQKZufXU2aNCl1vatmzZrp66+/1j/+8Q/5+/vryy+/VPv27SVJ/fv31/jx47Vjxw61bt1aM2fO1M0331zlzwkA/3r6FR3OiZGffyUjj9Vf879Ypu7dLykVii6//HLdeeeduvPOOxUVFaUFCxaoX79+kqSXXnrJud2hQ4c0YsQIffnll5LkvJvqed+aWAUANZYhySHz/Mz3/m1HvIN4BQBeUFa0Krbsm00KsDUqY6/za9PsOm3f/bmSU3K07belmj17lrZt26apU6eqd+/e6tOnj3r37q21a9eqZcuW8vf3V7169fT44487b0H/2GOP6eqrr5bdbtcFF1ygf/3rX9q2bZtSUlJkt9ud2xUv2znXrevhffv27dOjjz6q9PR0hYWF6YknnlDz5s1Lbfd///d/evnll5WTkyOr1ao+ffro7rvvlsViUUpKiq655hq1aNHCuf2LL76ohg0bljrOo48+qnbt2unWW2916+eCb8nNzdV3a3bKL+SCCu+7Z8tnOnFouwrys7R21TcaMGC1lixZounTpyshIUG9evVSgwYNdNddd2n06NEyDENdu3bV9ddfX+l5iVUAAJiLxTDD/YIBoIY4V7SSpN9/36uXn/lOwQH1q/xelsA9evK58fzCVcONHTtW11xzjQYOHKjvvvtO77//vpKSkkptt2PHDoWGhqpBgwbKz8/XuHHjNHToUPXv3995tsqyZcvO+36JiYlq06aNhg0b5o6PAx/10fyFWv1roGx+Aeff+DwahO7XAxNHumCq/yFWAQDOlJmZqYiICF2x+C75hVRsRYQ7FeXk67sBbygjI0Ph4eHeHsdjOPMKADzgfNGq2Pq1mxToH+uS98zJDFBaWppiY11zPPieEydOaMeOHXr11VclSX379tVzzz2nQ4cOKT4+vsS2rVu3dv45MDBQLVu21MGDByv1vsnJyRo3bpxSU1PVvHlzPfnkk/L396/8B4HPO5iaIZtfA5cc6+gf+VU+BrEKAFBe3G3QHIhXAOBG5Y1WxU4cz5XVEuyS9w6w1dPmH7fp6muIVzVVWlqa6tWrJz+/U/+5t1gsiomJUWpqaql4dbpjx47p+++/18svv+x8LicnR7fddpvsdrt69+6tO+64Qzabrcz9f/vtN82cOVP+/v4aM2aMli1bpv79+7v2w8GnnMjIl85/c8Fyyco9da2q0NDQcu9DrAIAwLcRrwDADSoarYoVFbluJbfNFqjMzPJdjBjVV0V/Qc/Ozta9996rESNGOM/Gqlu3rhYvXqyoqChlZGTokUce0XvvvaeRI8teutWnTx/nnSnbtWtX6TO4UH3Y7Q6XxSuHxV8nT548b7zy9/dXSEiIoqKiFBkZSawCAMCHEa8AwIUqG62K2fxc98uVw1GoWiGuOYsLvikmJkZpaWkqKiqSn5+fDMM451LSnJwcTZw4UQkJCfrrX//qfD4gIEBRUVGSpIiICF133XX6+uuvzxqvAgL+d10jm80mu93uwk8FX2SzuahcSbIaRc44ei6FhYVKT09Xenq6AgMDFRYW5jzz6vR/RwEAOBeWDZoD8QoAXKCq0apYZO1gHTQcsliq/oteXuFRXdjpqiofB74rKipKrVq10pIlSzRw4EAtW7ZMcXFxZS4ZzM3N1d13363u3bvrzjvvLPHaiRMnFB4eLj8/PxUUFOiHH35Qq1atPPUxUA1EhgUoJ8c1xwoNcigsLKxC++Tn5ys/P1/Hjh2TJGIWAAA+hngFAFXgqmhVrEvXdtq4er2CA2OqfKzg0Dw1bOiaCyTDd02ePFnTpk1TUlKSQkJClJiY6Hxt+vTpSkhIUK9evfThhx/ql19+UV5enpYvXy7p1AXeR48erS1btmjWrFnOs6i6du2qO+64wzsfCD4ppk6IDmQVyWqt+l8960RW/Y5PxCwAAHyLxTAM111gBQBqCFdHq9MlPvq68jKbVOkYhuFQk9Yn9PcJI1wzFABUwR9//KHHnv1UtrAWVTpO4ck/dNOVseqdcKmLJisbMQsAkJmZqYiICCV8OU5+IVX/P05cpSgnXysHzlRGRobCw8O9PY7HcOYVAFSAO6NVsUsT2mjpFykK8Iuq9DGKLPs0ZNhNCgw0z39oAdRcsbGxat2klnYeKZLVVvm/fkb6pyqh5/WuG+wsODMLAABzIV4BQDl4IloV63dVb23aOEsnDkXIarVVeP+ConT17n+B+vW7Ular6y6SDABV8eqL0zV05EPKNJpUan97TrJGjvTOzzViFgDUXFyw3Rz4rQYAzuHkyZP6/ffftX37do+Eq2IT/3GbAsJ2y+Go2F3aCu2ZuqC9XZMf/QfhCoCphISE6F9T/qZg+74K72spSNXIG7up+yUXy8/P+//fa3HI2rt3r7Zu3apt27Zp3759On78uAoKCrw9HgAA1Q7XvAKAMnjyTKuzyc3N1Wsz3tPhfbUU4FfnvNsXOg7oksviNHXag6pVq5YHJgSAitu+fYce/9frSsmqI5v/uX9WGQ67wqwHNe72a3XdtafunmoYhvLy8pSVlaXs7GxlZWWpqKjIE6OXG2dmAYDvK77mVc+F4013zavV171W4655RbwCgNOYIVqdafn3a7RqxTYdO2xVgH+MbFZ/52uFRSflsKSqfuMgjf7bYF1+eW/OuAJgena7XS+9+pZWrvtVh9MD5V+rjiyWUz+7DMNQwckM1Q7K0EXt4jX5gXGKiIg467GIWQAAdyiOV3/5zwTTxas1g14lXgFATWTGaHWmAwcOasP/bdGxo1myOyR/f6saNaqn/gOuUJs2bRQUFOTtEQGgQgzD0H83bNTK1Rt0Ij1HhiGF1ApQ14va6fI+l1XqphPELACAKxCvzIV4BaBG84VodTZRUVGKi4sjWgHAORCzAACVQbwyF+9f8RIAvIBoBQA1g8ViUXBwsIKDgxUdHW3KmMXdDAHAvByyyCHz3OHPTLN4EvEKQI1CtAKAmo2YBQCA7yFeAagRiFYAgLIQswAAMD/iFYBqjWgFAKgIYhYA4HQOwyKHYZ6lemaaxZOIVwCqJaIVAMAViFkAAHgf8QpAtUK0AgC4EzELAADPI14BqBaIVgAAbyBmAUD1ZhgWGSZaqmemWTyJeAXApxGtAABmQswCAMD1iFcAfBLRCgDgC4hZAABUHfEKgE8hWgEAfBkxCwB8C3cbNAfiFQCfQLQCAFRHxCwAAM6PeAXA1IhWAICahJgFAEBpxCsApkS0AgCAmAUA3sbdBs2BeAXAVIhWAACcHTELAFATEa8AmALRCgCAiiNmAQBqAuIVAK8iWgEA4DrELABwLcNkdxtk2SAAeBDRCgAA9yNmAQCqA+IVAI8iWgEA4D3ELACALyJeAfAIohUAAOZDzAKAczMkGYa3p/gfE43iUcQrAG5FtAIAwHcQswAAZkS8AuAWRCsAAHwfMQsAYAbEKwAuRbQCAKD6ImYBqGkcssgi89zhz2GiWTyJeAXAJYhWAADUPMQsAIAnEK8AVAnRCgAAFPNUzNq/f78SExOVnp6u0NBQJSYmqlmzZmfdPj8/X3/9618VFBSkefPmOWPW3LlztXjxYklSy5YtlZSUpOjo6FL7jxo1Sl27dtWECROqPDsAoOKIVwAqhWgFAADOx10x68knn9QNN9yggQMH6rvvvtP06dOVlJR01u1nzpypDh06aNeuXc7n1q9fr0WLFumdd95RSEiIZs+erQkTJujxxx/nzCwAToZhkWGYZ6memWbxJKu3BwDgW06ePKnff/9d27dv97lwFRUVpXbt2qlp06aEKwAAvKA4ZkVHR6tZs2bq2LGj2rZtq4YNG6p27dry8zv//7d+4sQJ7dixQ1dffbUkqW/fvjp06JAOHTpU5vabN2/W/v37NWDAgBLP79q1SxdddJFCQkIkSZdddpkWL17sPCtr79692rp1q7Zt26bs7Gxt2rRJl19+uVq2bKkbb7xRBQUFVfxuAADKizOvAJQLZ1oBAABXq8yZWWlpaapXr54zdFksFsXExCg1NVXx8fEltj158qReeOEF/fvf/9b+/ftLvNamTRt99tlnOn78uKKiorR48WLl5OQoIyNDERERzu2Kr5n1448/aubMmQoNDdXo0aM1Z84cjRo1ijOzAMADiFcAzoloBQAAPKU8Mat4u/J4+eWXNXToUEVHR5eKV127dtXw4cN1zz33yGazqU+fPpJ01rO/+vTpo6CgIBUVFally5bavHmzunTpwgXggWrOYVhkMdFSPYeJZvEk4hWAMhGtAACAt5UVsyIjI3X06FGFhYXp5MmTKiwsVFpammJjY0vtv2XLFq1Zs0ZvvfWWCgoKlJmZqZtuukmffPKJJGnIkCEaMmSIJGnr1q2KiYlxLiM80+lRymazyW63S+JuhgDgCcQrACUQrQAAgFlZLBY1btxYnTt31tq1azVy5Eh9+OGHaty4sdq1a1dqmeFHH33k/PPGjRv18ssva968ec7njh07prp16yovL0+zZs3SiBEjqjwjMQsAXI94BUAS0QoAAPiON954Q6NGjdKTTz6p8PBwzZ07V82aNZNhGLr99tt1+eWXq2fPnue9m+H48eNlGIYKCws1YMAADRs2zOWzErMA32YYpx5mYaZZPMliGDX1owOQiFYAAKD6Ks8F4L2NmAWYU2ZmpiIiItTu4wdkqxXo7XGc7Ln5+mXYc8rIyFB4eLi3x/EYzrwCaiiiFQAAqO4qczdDT+PMLAA4P+IVUMMQrQAAQE1FzAJQUYZhkWGiO/yZaRZPIl4BNQTRCgAAoCRiFgD4BuIVUM0RrQAAAMqHmAUA5kS8AqopohUAAEDVELMAsGzQHIhXQDVDtAIAAHAPYhYAeAfxCqgmiFYAAACeRcwCAM8gXgE+jmgFAABgDsQsoPpxGBZZTLRUz2GiWTyJeAX4KKIVAACAuRGzAMA1iFeAjyFaAQAA+CZiFgBUDvEK8BFEKwAAgOqFmAWYn2GcepiFmWbxJOIVYHJEKwAAgJqBmAUAZSNeASZFtAIAAKjZiFkAcArxCjAZohUAAADKQswCPO/UskHz3OGPZYMAvIpoBQAAgIogZgGoKYhXgJcRrQAAAOAKxCwA1RXxCvASohUAAADciZgFVJ1hWEy2bNA8s3gS8QrwMKIVAAAAvIGYBcBXEa8ADyFaAQAAwEyIWQB8BfEKcDOiFQAAAHwBMQsozfjzYRZmmsWTiFeAmxCtAAAA4MvOFbOKgxYxC4AnEK8AFyNaAQAAoDoiZgHwFuIV4CJEKwAAANQkxCzUBNxt0ByIV0AVEa0AAAAAYlZFTJw4UQsXLtS+ffu0detWtW/fvtQ2y5cv14ABA9SyZUvnc+vWrVNwcLCSk5M1ZMgQ2e122e12tW7dWrNnz1bt2rW1d+9ede3a1fkZgeqAeAVUEtEKAAAAOLuaGrO2/bJd87/+RinpWcrOL5Ak1QkJVtN6dXTHsKGKiorSkCFD9OCDD6pnz57nPFbbtm21cePGUs/Hx8dr9erVCg4OliTdc889mj59uv79739XeF7AFxCvgAoiWgEAAAAVV91j1n9/3KTn3/9Yv5y0q6hevCyWUKn4r912yUjJ1IcP/1NdYyL15D13q06dOpWeMzAw0Plnu92u7OxsRUZGltjm8ccf16JFi5SRkaEZM2ZowIABlX6/Go3bDZoC8QooJ6IVAAAA4DrVJWYZhqEnX3tdn/6arJN146UwqayrEllsfsqJa6zlDocGTf6nHho88Lzvv3PnTnXu3Fk2m0233367xo0b53ytoKBAF198sfbt26cLL7xQCxcudL52/PhxdenSRf/85z+1dOlSTZo0iXgFn0a8As6DaAUAAAC4n6/GrDc+mq9vcyXVjS/XMSxWq47FNtHjX3yt3JMnz7pd586ddfDgQUVEROjgwYMaMGCA6tatq5tuukmSFBAQoC1btqigoEB33323Zs2apQcffFCSFBISokGDBkmSevTooT179lThUwPeR7wCzoJoBQAAAHiPL8Ssxct+0Dfp+bLUianwvifrxSsj96SOHD1a5uvh4eHOPzdo0EC33HKLVq1a5YxXxQICAnT77bdrzJgxznh1+u8BNptNdru9wvPhTya726DMNIsHEa+AMxCtAAAAAPMxW8zKz8/Xpxt/kqVZu0ofw2Hz00tzP9DlffqUeu3w4cOKiYmR1WpVVlaWvvrqK40ePVqStH//ftWpU0chISFyOBz65JNP1LFjx0rPAZgd8Qr409atWzVy5EgdP35coaGhSkxMVLNmzUptZxiGZsyYoTVr1shqtSoiIkJTpkxRw4YNJUmrVq3SSy+9JLvdrgsuuEDTpk1TrVq1Sh0nMTFRbdq00bBhw6o8O9EKAAAANY23Y9Z/vl2mP+KbyVaJfdMWL1D2zm0qys7Sko8/UJMfvtXevXt155136rrrrtN1112nBQsW6PXXX5efn5+Kioo0dOhQ3X777ZKkbdu26eGHH5YkORwOde7cWTNmzHDhpwPMxWIYRg29Vj1wSvGZVsOGDdM111yjgQMH6rvvvtP777+vpKSkUtsvX75cSUlJevvtt+Xn56e33npLu3fv1tNPP63c3Fxdf/31mj17tpo0aaJnnnlGISEhmjBhQqnjuCJeEa0AAACAsrk7Zj36RpL2xjWv8nEMw6GbImyaft89VR8KLpOZmamIiAg1TXpU1lrm+X3LkZun5Nv/pYyMjBJLS6s7q7cHALzl5MmT+v3337V9+3bt2bNHO3bs0NVXXy1J6tu3rw4dOqRDhw6VuW9hYaHy8/NlGIZycnIUHR0tSVq7dq3atGmjJk2aSJKGDh2qr7/++qwzJCcna9y4cbrxxhv1wAMPqLCwsFyzR0VFqV27dmratCnhCgAAAChD8ZlZ0dHRat68uTp27Ki2bduqYcOGioyMlJ9f5RciORwOHc0rcNGcVh34I8MlxwKqK5YNosYp65pWaWlpqlevnvM/YBaLRTExMUpNTVV8fMm7hiQkJOjHH3/UVVddpZCQENWrV0+zZ8+WJKWmpiouLs65bXx8vI4cOSKHwyGrtXQr/u233zRz5kz5+/trzJgxWrZsmfr373/W2TnTCgAAAKgcVy4zPHHihLL9A+WqS2cfycpx0ZGA6ol4hRrjfBdit1jK95+eHTt2aN++fVqyZIlCQkL0yiuv6Nlnn1ViYmKFjiNJffr0cYaodu3a6eDBg2VuR7QCAAAAXKsqMauwsFAOi61S17sqi8NwuOhIcDXDZHcbNNMsnkS8QrVXnrsHxsTEKC0tTUVFRfLz85NhGEpLS1NsbGypbb/88kt16dJFYWFhkqRrr71WkyZNkiTFxsZqw4YNzm0PHTqk6OjoMs+6kk7d1rZYWbewJVoBAAAAnlGRmBUREaHAwny56gpatU77vQBAaVzzCtXW6de0Ole4kk5FolatWmnJkiWSpGXLlikuLq7UkkFJql+/vjZs2OD8D9eqVavUvPmpCzX26NFD27dv1969eyVJ8+fPV79+/So8O9e0AgAAALzrXNfMio+PV5Sf686AqR9Rcy68DVQGZ16h2inPmVZlmTx5sqZNm6akpCSFhIQ4lwFK0vTp05WQkKBevXrppptu0t69ezVs2DD5+/urbt26mjx5siQpJCREU6ZM0X333Se73a4WLVqUOM75BAcHq127dgQrAAAAwGTOPDOrY8N4feswKnTZkLLYszN1SY8OLpoSLmdYTj3MwkyzeJDFMAzD20MArlDZaGUGLA8EAAAAfMuWn7fq1tfflSO6fpWOE5earO9mviibzVVX0IIrZGZmKiIiQk3efkzWWub5Pc2Rm6e9o6crIyND4eE154w9zryCzyNaAQAAAPC0Th076NLIIK2y22WpbHjKStfwXj0IV8B5EK/gs4hWAAAAALzphYcf0PX3P6rD8c0rvK+jsEA9rPkafcvNbpgMrmIYpx5mYaZZPIkLtsPnVORC7GbDhdgBAACA6iMiIkKvPzBJMYf3yHA4yr2fI/+kOmUf0ex/TavyNbOAc3nqqafUrVs3hYWFKTo6Wtdff7127tx53v1WrFihLl26KCgoSM2aNdOsWbM8MO3ZEa/gM4hWAAAAAMymdcsL9NlT09Qj/7h04sg5tzUMh4JS92t4TIg++PczCgwM9NCUqKlWrFih8ePHa/369fr2229VVFSkfv36KScn56z7JCcna8CAAbrsssu0efNmTZ48WRMnTtSCBQs8OHlJXLAdpsfyQAAAAAC+4LsVK/TB18u081i6jln9VRRYS4ZhqNbJLMX4WXRh/RiNu3WYWjRr5u1RcR7FF2xv/Kb5Lti+b0zlL9h+9OhRRUdHa8WKFUpISChzm4ceekgLFy7Ur7/+6nxu7Nix+umnn7Ru3bpKz14VXPMKpkW0AgAAAOBLrujVS1f06iXDMPT777/r9/0HFODnp7atW6levXreHg/VSGZmZomvAwMDy3UmX0ZGhqRTv7Oezbp169SvX78Sz1111VV6++23VVhYKH9//0pMXDXEK5gO0QoAAACAL7NYLGrevLmaN6/4hdyB8mjYsGGJr6dOnarExMRz7mMYhu6991717NlT7du3P+t2qampiomJKfFcTEyMioqKdOzYMcXFxVV67soiXsE0iFYAAAAAADMxDIsMwzwX1S+e5cCBAyWWDZbnrKsJEybo559/1urVq8+77Zk3Eii+4pS3bjBAvILXEa0AAAAAACi/8PDwCl3z6u6779bChQu1cuVKNWjQ4JzbxsbGKjU1tcRzR44ckZ+fn+rUqVOpeauKeAWvIVoBAAAAAOA+hmHo7rvv1ueff67ly5eradOm592nR48e+vLLL0s8980336hr165eud6VRLyCFxCtAAAAAAA+w/D2AJU3fvx4ffDBB/rPf/6jsLAw5xlVERERCg4OliQ98sgjSklJ0dy5cyWdurPgq6++qnvvvVdjxozRunXr9Pbbb+vDDz/02ucgXsFjiFYAAAAAAHjO66+/Lknq3bt3ieeTkpI0atQoSdLhw4e1f/9+52tNmzbV4sWL9Y9//EOvvfaa4uPjNWPGDA0ePNhTY5dCvILbEa0AAAAAAPC84gutn8ucOXNKPderVy9t2rTJDRNVDvEKbkO0AgAAAAD4MrPebbCmIV7B5YhWAAAAAADAVYhXcBmiFQAAAAAAcDXiFaqMaAUAAAAAqJYMmetug2aaxYOIV6g0ohUAAAAAAHA34hUqjGgFAAAAAAA8hXiFciNaAQAAAABqFsufD7Mw0yyeQ7zCeRGtAAAAAACAtxCvcFZEKwAAAAAA4G3EK5RCtAIAAAAAQNxt0CSIV3AiWgEAAAAAALMhXoFoBQAAAAAATIt4VYMRrQAAAAAAOAeWDZoC8aoGIloBAAAAAABfQbyqQYhWAAAAAADA1xCvagCiFQAAAAAAlWBYTj3MwkyzeBDxqhojWgEAAAAAAF9HvKqGiFYAAAAAAKC6IF5VI0QrAAAAAABcxzBOPczCTLN4EvGqGiBaAQAAAACA6op45cOIVgAAAAAAoLojXvkgohUAAAAAAB5g/PkwCzPN4kHEKx9CtAIAAAAAADUN8coHEK0AAAAAAEBNRbwyMaIVAAAAAABeZFhOPczCTLN4EPHKhIhWAAAAAAAApxCvTIRoBQAAAAAAUBLxygSIVgAAAAAAmI/FOPUwCzPN4knEKy8iWgEAAAAAAJwb8coLiFYAAAAAAADlQ7zyIKIVAAAAAAA+xPjzYRZmmsWDiFceQLQCAAAAAACoHOKVGxGtAAAAAAAAqoZ45QZEKwAAAAAAqgHDcuphFmaaxYOIVy5EtAIAAAAAAHAt4pULEK0AAAAAAADcg3hVBUQrAAAAAACqMe42aArEq0ogWgEAAAAAAEg33nhjhfeZNWuWoqOjy7098aoCiFYAAAAAAAD/88UXX+imm25ScHBwubb/4IMPlJ2dTbxyNaIVAAAAAAA1EMsGy2XGjBnljlGffvpphY9PvDoHohUAAAAAAMDZ/fDDD4qKiir39kuWLFH9+vUr9B7EqzIQrQAAAAAAAM6vV69eFdq+Z8+eFX4P4tVpiFYAAAAAAMCJZYMV5nA4tHv3bh05ckQOh6PEawkJCZU6JvFKRCsAAAAAAICqWr9+vW699Vbt27dPhlGytFksFtnt9kodt0bHK6IVAAAAAACAa4wdO1Zdu3bVokWLFBcXJ4vF4pLj1sh4RbQCAAAAAADnZVhOPczCTLOUYdeuXfr000/VokULlx63RsUrohUAAAAAAIB7XHLJJdq9ezfxqjKIVgAAAAAAAK73888/O/98991367777lNqaqo6dOggf3//Ett27NixUu9RreNVcbRKTU1VYGBgqdf379+vxMREpaenKzQ0VImJiWrWrFmp7b744gu9++67cjgcuvjii/XQQw/Jz+/Ut27VqlV66aWXZLfbdcEFF2jatGmqVauWDh06pBEjRmjZsmWVmp1oBQAAAACAd1mMUw+zMNMsxTp16iSLxVLiAu133HGH88/Fr3HB9jPk5uYqJSVFJ06c0J49ezR69Gh9+OGHatiwYYntnnzySd1www0aOHCgvvvuO02fPl1JSUkltklJSdGsWbP0/vvvKyoqSvfee6/+85//aPDgwcrNzdX06dM1e/ZsNWnSRM8884zeeecdTZgwodKzE60AAAAAAICvSE5Odvt7VKt4lZOTo6+XfKMvP1iko8l/KCMtS/vTf1deXp4evGuyul7UTZf2v1jde16iP/74Qzt27NCrr74qSerbt6+ee+45HTp0SPHx8c5jLlu2TH369FGdOnUkSYMHD9bcuXM1ePBgrV27Vm3atFGTJk0kSUOHDtWkSZNKxKtZs2Zp9erVys7O1v3336+ePXuWOTvRCgAAAAAA+JrGjRu7/T2qRbxyOBzavHmznn3k3zq07rgCs0NlsVgVpAhlB2QqMjJSxzOO6eg3ufrk+8VaeuF3uvT6bqpXr55z+Z/FYlFMTIxSU1NLxKvU1FTFxsY6v46Pj1daWprztbi4uBKvHTlyRA6HQ5KUkZGh1q1ba+zYsVq7dq2ef/75UvGKaAUAAAAAgEkZfz7Mwkyz/GnhwoW6+uqrS13f6mwWL16sPn36KDg4uNzvYa3scGbhcDi04JPPdP9NU3T823wF5YTJYjl168hcI1sn8o/qxRdf1In8ozpp5CiwqJbyf/TTp89/pZzsnHK9R/HxJJVYw3nma2cKDg5W7969JZ26KFlKSorztaioKLVr105NmzYlXAEAAAAAAJ90ww03KD09vdzb33zzzTp8+HCF3sPnz7z6ftn3mvnwO/LbHyqd0ZGOKkUN6zfUyJEj9dijj+nIoRQ1VktJUlh6HR3XBv3w9XL1uaq3DMNQWlpaibOsJCk2NrbEN/Xw4cOKiYlxvrZhwwbna4cOHVJ0dLSs1lNNMCAgwPma1WqV3W7nTCsAAAAAAFBtGIahUaNGlXmjvLLk5eVV+D18+syrtLQ0zXh8pmz7apX5+omAI7r51ptlsVh0860364+ANOdrAZYghSlS77z4rjIyMrRs2TLFxcWVWDIoSZdffrl++OEHHT9+XIZhaMGCBerXr58kqUePHtq+fbv27t0rSZo/f77ztTPVrl1bkjjTCgAAAAAAVBsjR45UdHS0IiIiyvUYPny4wsPDK/QePn3m1ZuvvqXMDUXyt5Sue3lGro4XpGnw4MGSTl1o/fnnn1eeTirIcmpdZRt10S/HNuiG625Q/Ub1lZiYKEmaPn26EhIS1KtXLzVo0EB33XWXRo8eLcMw1LVrV11//fWSpJCQEE2ZMkX33Xef7Ha7WrRo4TxGseIzrYqKitz2fQAAAAAAAPCGpKQkt7+HxTjzIk4+YtWqVRp9899UeKjs13OUKWu0Q4cOp8hqtcrhcCguNl7GUZtCVLLwOcIK1Ov6v8jPz0/9+vXTBRdcUOX5WB4IAAAAAIBvyszMVEREhBo984Ssweb5vd5xMk/7H5qijIyMCp+95Mt89syrdevWaffhnTJkqGvnrgoJCTljixjd+tdbndefslqt+uf0afrw/Q9LHSs7J0fz5s2TzWZTmzZtqhSviFYAAAAAAFQPFkkWE53yc/ZbxlVvPhuvgvyC1dG4VL8HbNWJEyf0xptvqHPnzufc56677tJdd91V4rlNmzZpyI1DFBlRWy++9G916NChUvMQrQAAAAAAAFzPZy/YfjA5RfUscepS0EcnDxTpkosv0YsvvqjyroJ0OBx68cUXdcnFlyjvoF1Xd7+2UuGqdu3aateuHRdiBwAAAAAAcAOfjVeynLodo5/FX23t3XSB/UI99MBDuqpffx05cuScux45ckT9r7paDz3wkFraO6mtvVu5b+l4poKCAhUUFJQ7mgEAAAAAAB9hWMz38FEpKSmV3tdn41WLNs2VbzkpSbJYLKpvaaqu9su1ccWP6tCug7KyssrcLysrSx3addDGFT+qq/1yxVuayGKxqFZEcKXmyMnJ0a5du7Rz505lZmYSsQAAAAAAAP6Umpqqu+++Wy1atKj0MXw2XnX/yyVS3cISz4VYwhRX2FT5BQVnXcIXFBSkvPx8xRU2VYglTJKUr5O6oGOzKs1DxAIAAAAAADVRenq6hg8frnr16ik+Pl4zZsyQw+HQ448/rmbNmmn9+vV65513Kn18n41XTZs2VUybOqWeP+53WDfceL38/f3L3M/f31833Hi9jvul/u+5ZoZ6XNbDJXMRsQAAAAAAqCYMEz5MaPLkyVq5cqVGjhypqKgo/eMf/9C1116r1atXa8mSJdqwYYNuueWWSh/fZ+NVWFiYLht4qQr8TzqfKzIKdcyRqqFDhzqfe//999Wi+QV6//33nc8NHTpUxxyHVWQUym7Y1bJHU/n5ufbGi0QsAAAAAABQEyxatEhJSUl6/vnntXDhQhmGoZYtW+r7779Xr169qnx8n41XkjTyzhGq1zPUGYaO6bCCgoLUt29fZWVl6a9/HaHbbhup7N/zddttI/XXv45QVlaWrrjiCgUFBemYDsuvbYH+Orby9e98iFgAAAAAAKA6O3TokNq2bStJatasmYKCgnTnnXe67Pg+Ha8iIyM1+bkHpda5MgxDx2yHNfC667R161Z1bN9RC+d/qS6OXupguURdHAlaOP9LdWzfUdu2bdO1AwfqaMhB3XLPkLNeH8uViFgAAAAAAPgYby8R9JFlgw6Ho8Tlm2w2m0JCQlx2fNeulfOCzp076/E3Hta08U/q+K+pOnr0iHp076F6qq8u9t7ys5z65kVY6qhLQW/9lrJF3S/proReCUovOqGWbS/w6LzFESskJETx8fEKCwuTxeK7t7oEAAAAAAA1m2EYGjVqlAIDAyVJeXl5Gjt2bKmA9dlnn1Xq+D4fryQpISFBQ8dv1/d//1orV6xSC3tH1VfTUlHIJj81DWml+g3itG7dOuXn52nt2rW6/PLLPT4zEQsAAAAAAFQHt912W4mm8de//tWlx68W8Uo6FYO6deumBx98UGu+XafU3Uf1R2qmCvMKZfOzKTw6VHUaRmrATbepQcP62rt3rxITE3Xo0CGvz03EAgAAAADAfCzGqYdZmGmW082ZM8etx7cY1fDiS0VFRTp8+LCOHj3qc9eWImIBAAAAAOBdmZmZioiIUJN//UtWD1wnu7wceXna++ijysjIUHh4uLfHcbLZbDp8+LCio6Pdcvxqc+bV6fz8/NSwYUPFxcUpLS1NR44ckcPh8PZY5cKZWAAAAAAAwJe4+8Shahmvivn5+al+/fqKiYkhYgEAAAAAgIox2x3+zDSLB1XreFWMiAUAAAAAAOA+X3/9tSIiIs65zXXXXVepY9eIeFWMiAUAAAAAAOB6I0eOPOfrFotFdru9UseuUfGqGBELAAAAAACcF8sGyy01NZULtrsDEQsAAAAAAKBq3N0janS8KkbEAgAAAAAAqBzuNuhBRCwAAAAAAFDMYpx6mIWZZjndyJEjFRwc7LbjW912ZB9WHLE6dOig2NhYWa2+820qjlg7d+5UZmam2+snAAAAAACo2ebOnauTJ0+67ficeXUOnIkFAAAAAABwbiwbNAEiFgAAAAAANZBhOfUwCzPNcgZ3tgbiVQUQsQAAAAAAAEpr2bLleTvDiRMnKnVs4lUlELEAAAAAAAD+Z9q0aYqIiHDLsYlXVUDEAgAAAACgGjP+fJiFmWY5w80336zo6Gi3HJt45QJELAAAAAAAUFO5uyMQr1yIiAUAAAAAAGoa7jbog4hYAAAAAAD4Potx6mEWZprldO5uHsQrNyJiAQAAAAAAVA3xygOIWAAAAAAAAJVDvPIgIhYAAAAAAD6Euw2aAvHKC4hYAAAAAAAA5UO88iIiFgAAAAAAwLkRr0yAiAUAAAAAgAmZ7G6DLBuE1xGxAAAAAAAASiJemRARCwAAAAAA4BTilYkRsQAAAAAA8CLuNmgKxCsfQMQCAAAAAAA1FfHKhxCxAAAAAABATUO88kFELAAAAAAAPIBlg6ZAvPJhRCwAAAAAAFDdEa+qASIWAAAAAACorohX1QgRCwAAAAAA17EYpx5mYaZZPIl4VQ0RsQAAAAAAQHVBvKrGiFgAAAAAAMDXEa9qACIWAAAAAADwVcSrGoSIBQAAAAAAfA3xqgYiYgEAAAAAAF9BvKrBiFgAAAAAAJyD8efDLMw0iwcRr0DEAgAAAAAApkW8ghMRCwAAAAAAmA3xCqUQsQAAAAAAkCzGqYdZmGkWTyJe4ayIWAAAAAAAwNuIVzgvIhYAAAAAAPAW4hXKjYgFAAAAAKhxauhSPTMhXqHCiFgAAAAAAMBTiFeoNCIWAAAAAABwN+IVqoyIBQAAAAColgyZa9mgmWbxIOIVXIaIBQAAAAAAXI14BZcjYgEAAAAAAFchXsFtiFgAAAAAAF9mMU49zMJMs3gS8QpuR8QCAAAAAACVRbyCxxCxAAAAAABARVm9PQBqnuKI1aFDB8XGxspq9Z1/DYsj1s6dO5WZmSnDqKHnbAIAAABATWCY8FEBK1eu1MCBAxUfHy+LxaIvvvjinNsvX75cFoul1GPHjh0Ve2MX48wreA1nYgEAAAAA4D45OTm68MILdfvtt2vw4MHl3m/nzp0KDw93fl2vXj13jFduxCt4HRELAAAAAADXu/rqq3X11VdXeL/o6GhFRka6fqBK8p31Wqj2WE4IAAAAoKbo16+fOnbsqE6dOumyyy7Tli1bSm2zd+9e9e7dWxEREeratWup159//nm1b99enTp1Uvfu3bVhwwbnfnXr1nX3R6gRiu82aKaHJGVmZpZ45Ofnu/RzX3TRRYqLi1Pfvn31ww8/uPTYlcGZVzAdzsQCAAAA4Ivsdruys7N18OBB/bRltY4dSZbFYlWTZhfpos49FB0drYCAAEnSJ5984jyz5YsvvtAdd9yhTZs2lTheeHi4nnjiCWVkZGjq1KklXvvpp5/0yiuv6JdfflFoaKjee+89jR8/Xv/973898lnhXQ0bNizx9dSpU5WYmFjl48bFxWn27Nnq0qWL8vPzNW/ePPXt21fLly9XQkJClY9fWcQrmBYRCwAAAICZFceq7Oxspaena9k378mR/39qEn9IfS4qUHRdmwxD2p38oX74MlRH0puqReuhuvqaYSWWZGVkZJS58iQqKko9e/bU8uXLy3z/wsJC5eTkKDQ0VOnp6WrQoEGJ1x9//HEtWrRIGRkZmjFjhgYMGODKjw8vOnDgQIlrUgUGBrrkuK1atVKrVq2cX/fo0UMHDhzQ888/T7wCzoWIBQAAAMAMTo9VWVlZysnJkSQdOLBbO3+epVE3HlC9usUR6tSv2xaL1LK5v1o2z5e0Q5u3TdfzT32hEXe8pEcffdS5JGvp0qUVmuXCCy/Uvffeq6ZNmyoqKkqBgYFauXKl8/Xjx4+rS5cu+uc//6mlS5dq0qRJxKvKqMQd/tzqz1nCw8NLxCt36t69u9577z2PvNfZEK/gM4hYAAAAADzpbLHqdLt+2yRH1mt64G+5Ks9lpS9qL7Vv9bP+/dbNmvr4u5o7d67effddPfDAA1q8eHG5Z9u3b58WLlyoPXv2KC4uTq+++qqGDx/uPEsrJCREgwYNknTq7Jk9e/aU+9jA6TZv3qy4uDivzkC8gs8hYgEAAABwh/LEqtMdO5am3GMzNWpoboXex9/fovv/dkTPzPqbJj7whUaOHKmxY8fq+PHjqlOnTrmOMX/+fLVv394ZFW6//XZNnDhRdrtdkhQUFOTc1mazOZ9HzZKdna3du3c7v05OTtaWLVsUFRWlRo0a6ZFHHlFKSormzp0rSXrppZfUpEkTtWvXTgUFBXrvvfe0YMECLViwwFsfQRLxCj6MiAUAAACgKioaq05nGIY2rp2hh8dmS6rY3+Uzs+zKzjF057B9evedaarf6C+qU6eOoqKiyn2MZs2aae7cucrOzlZoaKi+/PJLtWnTRjabrUKz4DxMumywvDZu3Kg+ffo4v7733nslSSNHjtScOXN0+PBh7d+/3/l6QUGB7r//fqWkpCg4OFjt2rXTokWLvL7klHgFn+eqiLV//34lJiYqPT1doaGhSkxMVLNmzUptZxiGZsyYoTVr1shqtSoiIkJTpkxx3u1h1apVeumll2S323XBBRdo2rRpqlWrVqnjJCYmqk2bNho2bBgRCwAAAPCAqsSqM+3Y/qMG9NpTqb+/Z2Q6NPTOwzqZZyg9c6aaNPuvvvrqK1ksFt1555267rrrdN111yk/P1/NmzdXfn6+MjIy1KBBA40YMUJPPfWUbrjhBm3YsEFdu3ZVYGCgwsLCvH5dIphP7969ZRhnL15z5swp8fWDDz6oBx980M1TVZzFONenAHxQUVFRpSLW2LFjdc0112jgwIH67rvv9P777yspKanUdsuXL1dSUpLefvtt+fn56a233tLu3bv19NNPKzc3V9dff71mz56tJk2a6JlnnlFISIgmTJhQ6jinx6tiRCwAAADAdVwZq8604tsndc+orVU+TnqGXZ/+MFJ/G/u4C6aCq2RmZioiIkIt731StsCg8+/gIfb8PP3278nKyMjw2AXbzeD8V5MDfEzxmVgdOnRQbGxsmbecPdOJEye0Y8cOXX311ZKkvn376tChQzp06FCZ2xcWFio/P1+GYSgnJ0fR0dGSpLVr16pNmzZq0qSJJGno0KH6+uuvz/q+ycnJGjdunG688UY98MADSk9P165du7Rz505lZmaes5ADAAAAKMlutysjI0MpKSnasWOHtmzZot27dys1NdWl4UqSQoPK/l2hoiIjbMrL/oW/+5uUxTDfoyZi2SCqrYosJ0xLS1O9evXk51d8O1uLYmJilJqaqvj4+BLbJiQk6Mcff9RVV12lkJAQ1atXT7Nnz5YkpaamlrgLQ3x8vPN9y4pov/32m2bOnCl/f3+NGTNGy5YtU//+/bkmFgAAAFAO7jyz6lyysrJUr3a6y44XYDuqkydPlnm5EQDEK9QA5Y1Y5Y1DO3bs0L59+7RkyRKFhITolVde0bPPPqvExMQKHUeS+vTp47wLSLt27XTw4MESrxOxAAAAgP/xVqw6U3Z2tqIiC+WqxUw2a4FLjgNUV8Qr1BjniljFzxUVFcnPz0+GYSgtLU2xsbGljvPll1+qS5cuCgsLkyRde+21mjRpkiQpNjZWGzZscG576NAhRUdHn3XpYkBAgPPP57p9LRELAAAANZFZYtWZAgIClPuH667C4zBs5brcCbzAx+82WF3wvw7UOGVdEysqKkqtWrXSkiVLJEnLli1TXFxcqSWDklS/fn1t2LBBRUVFkk7dXbB58+aSpB49emj79u3au3evJGn+/Pnq16+fy2YvjlhcEwsAAADVkSevWVUVUVFRSklz3cWyC4qiZLPZXHY8oLrhzCvUWGeeiTVlyhRNnTpVSUlJCgkJcS4DlKTp06crISFBvXr10k033aS9e/dq2LBh8vf3V926dTV58mRJp+4WOGXKFN13332y2+1q0aJFieO4CmdiAQAAoDow65lV52OxWJSTFyMps8rHKiw0ZNgay9/fv+qDAdWUxeDUDUCSVFRUdN4Lu5sVEQsAAAC+wFdjVVn+b+1Xur7XXMVGV+2Mqc8WB6jtJR+rbbt2LpoMrpCZmamIiAi1mvSkbIFB3h7HyZ6fp50vT1ZGRobCw1139p/ZceYV8KeK3J3QbDgTCwAAAGZUnWLVmbpc3F8ff/WNJt1xtNLHKCgwtCelvQa1bOnCyYDqh3gFnIGIBQAAAFROdY5VZ/Lz81NM45Fasf5F9epe9o2XzuetjyN1823PsGQQOA/iFXAWRCwAAADg3GpSrCpLq9ZdtG71dQoL+Y86d6jY7wof/qeWLugwWY0bN3bTdHAFi3HqYRZmmsWTiFfAeRCxAAAAgFNqeqwqS4+eN+nH/9bSr7s/163X55z379vZOQ69/XGsOl/6qBJ69ffQlIBvI14B5UTEAgAAQE1DrCqfLhdfq2PHLtYLb7+tBtE7NaBPrsLDSl7I/UBKkZasqKc8RxfdOnqqYmJivDQt4HuIV0AFEbEAAABQXdntduXk5CgrK4tYVUF160ar79WPKDs7W/MW/6DCvL3y88uVDIsK7ZGKq99FQ0cOVlRUFH8H9yXGnw+zMNMsHkS8AiqJiAUAAABfR6xyvdDQUPVMGKSwsDCFhoYqLCxMtWrV4u/bQBUQr4AqImIBAADAVxCr3MNqtRKrADciXgEuQsQCAACA2RCr3INYVXNwt0FzIF4BLkbEAgAAgLcQq9yDWAV4F/EKcBMiFgAAANyNWOUexCrAXIhXgJsRsQAAAOAqxCr3IFbhrLjboCkQrwAPIWIBAACgoohV7kGsAnwL8QrwMCIWAAAAzoZY5R7EKsC3Ea8ALyFiAQAAgFjlHsQquAzLBk2BeAV4GRELAACg5iBWuQexCqjeiFeASRCxAAAAqh9ilXsQq4CahXgFmAwRCwAAwHcRq9yDWAVvsfz5MAszzeJJxCvApIhYAAAA5kescg9iFYDTEa8AkyNiAQAAmAexyj2IVQDOhXgF+AgiFgAAgOcRq9yDWAWfwd0GTYF4BfgYIhYAAID7EKvcg1gFoCqIV4CPImIBAABUHbHKPYhVAFyJeAX4OCIWAABA+RGr3INYherKYpx6mIWZZvEk4hVQTRCxAAAASiNWuQexCoAnEa+AaoaIBQAAajJilXsQqwB4E/EKqKaIWAAAoCYgVrkHsQr4E3cbNAXiFVDNEbEAAEB1QqxyD2IVADMjXgE1BBELAAD4ImKVexCrAPgS4hVQwxCxAACAmRGr3INYBVRBDV2qZybEK6CGImIBAAAzqEyseu6557Ry5UodPnxYH330kVq0aFHmdhs3btSkSZPUuHFj53PvvPOOgoKCJElz587VV199JcMw1LhxY02dOlVhYWGljpOYmKg2bdpo2LBhlfyUnkesAlCdEK+AGo6IBQAAPMkVZ1b17dtXt912m+68887zbtusWTPNmzev1PPr16/XokWLlJSUpJCQEM2ePVszZ87UQw89VOF5zIBYBaA6I14BkETEAgAA7uGOZYCdO3eu8jF27dqliy66SCEhIZKkyy67TGPHjj1rvEpOTta4ceOUmpqq5s2b68knn5S/v3+V56gsYhXgGRbj1MMszDSLJxGvAJRAxAIAAFVhtmtW7du3T8OHD5fNZtPAgQM1dOhQSVKbNm302Wef6fjx44qKitLixYuVk5OjjIwMRURElDrOb7/9ppkzZ8rf319jxozRsmXL1L9/f499DmIVgJqMeAWgTEQsAABQHmaLVadr3bq1Fi9erNDQUKWlpWnSpEmKjIzUlVdeqa5du2r48OG65557ZLPZ1KdPH0mn/g5Ulj59+jivldWuXTsdPHjQrbMTqwCTMGSuC7abaRYPIl4BOCciFgAAOJ2ZY9WZQkNDnX+OiYnRVVddpc2bN+vKK6+UJA0ZMkRDhgyRJG3dulUxMTHOZYRnCggIcP7ZZrPJbre7dFZiFQCcHfEKQLkQsQAAqJl8KVad6dixY4qKipLValVOTo5WrVqlQYMGlXi9bt26ysvL06xZszRixAiPzUasAoDyI14BqBAiFgAA1ZsvxKpnnnlGK1as0PHjxzV+/HgFBwfriy++kCRNnz5dCQkJ6tWrl5YtW6YFCxY4z5Tq27evrrvuOudxxo8fL8MwVFhYqAEDBmjYsGFum5lYBfgmLthuDhbDMGroRwfgCkVFRT4XsYoRsQAA8I1Y5YuIVYBvy8zMVEREhDrc+aRsAUHeHsfJXpCnrW9NVkZGhsLDw709jsdw5hWAKuFMLAAAfAuxyj2IVQDgPsQrAC5BxAIAwJyIVe5BrAJqCO42aArEKwAuRcQCAMC7iFXuQawCAO8hXgFwCyIWAACeQaxyD2IVAJgH8QqAWxGxAABwLWKVexCrAJSFuw2aA/EKgEcQsQAAqBxilXsQqwDAdxCvAHgUEQsAgHMjVrkHsQoAfBfxCoBXELEAADiFWOUexCoALsHdBk2BeAXAq4hYAICahljlHsQqAKi+iFcATIGIBQCorohV7kGsAoCag3gFwFSIWAAAX0escg9iFQCvYNmgKRCvAJgSEQsA4CuIVe5BrAIAFCNeATA1IhYAwGyIVe5BrAIAnA3xCoBPIGIBALyFWOUexCoAvsBinHqYhZlm8STiFQCfQsQCALgbsco9iFUAgMoiXgHwSUQsAICrEKvcg1gFAHAV4hUAn0bEAgBUFLHKPYhVAKol7jZoCsQrANUCEQsAcDbEKvcgVgEAPIV4BaBaIWIBAIhV7kGsAgB4C/EKQLVExAKAmoNY5R7EKgCQLIYhi2GetXpmmsWTiFcAqjUiFgBUP8Qq9yBWAQDMingFoEYgYgGA7yJWuQexCgDgK4hXAGoUIhYAmB+xyj2IVQBQCdxt0BSIVwBqpOoasXbt2qWRI0fq2LFjioyM1Jw5c9S2bdsS+xuGoQcffFCLFy+WzWZTnTp19Oabb6pFixaSpK+++kr333+/ioqKdOGFF+rdd99VaGio9u7dq65du+rYsWMe/8wAqje73a7MzEzl5OQoOzu7RKx67rnntHLlSh0+fFgfffSR82fV6TZu3KhJkyapcePGzufeeecdBQUFSZLmzp2rr776SoZhqHHjxpo6darCwsJ06NAhjRgxQsuWLXP/h/QCYhUAoLogXgGo0XwlYtntdq1Z/X/6bed+Zabnye6Q/AOsql07WBd3v1Dt27eRxWLRmDFjdO2112rQoEH69ttvdcstt2ju3LkljvXDDz9o6dKlevfdd+Xv768333xT48aN03PPPafc3FyNHDlSb7/9tpo2baqnnnpKkyZN0sSJE5WSkiK73a6ffvrJS98FANWJw+FQbm6ulq5YqX3H/1BmQaEMSbVsNsWG1VK/v1yq6Hr11LdvX91222268847z3m8Zs2aad68eaWeX79+vRYtWqSkpCSFhIRo9uzZmjlzph566CE3fTLvIVYBAKor4hUAyLwRy+FwaP7HX2nLj/uVn11XAf4RkiKcrx/+3dCm9WtUJ+Z7XXLpBfr111/1yiuvqKioSL1799bTTz+t/fv3Kz4+3rmP3W5XQUGBcnNzVatWLWVmZqpevXoqKirSypUr1aZNGzVs2FBFRUUaPHiwJk2apHHjxslut8swDL366qtavXq1srOzdf/996tnz55e+M4A8GU5OTl6Y8Hn+iUzVzn1m8gaGVfidcNu1zeffqnmfhbd3v9KxcTEVPq9du3apYsuukghISGSpMsuu0xjx44tEa9mzZrlkz/XiFUA4H4W49TDLMw0iycRrwDgNGaKWEeOHNFrMz5W9vE4+fs1V4B/6W0sFouCA2KV+4f06YebZLP5l3gtJiZGqampJeJVQkKCfvzxR1111VUKCQlRvXr1NHv2bElSamqq4uL+90tkfHx8ie9BRkaGWrdurbFjx2rt2rV6/vnnfeaXPADm8N8tPylp5VqlN20tS12brGVsY7HZVNS4hXYYhqYu+lbXNK5/3uPu27dPw4cPl81m08CBAzV06FBJUps2bfTZZ5/p+PHjioqK0uLFi5WTk6OMjAxJvvVzjVgFAKipiFcAUAZvR6wjR47o+ac/kKWgpfz9yveLib+1tgrzbXr26Tf00CNjZbPZytxux44d2rdvn5YsWaKQkBC98sorevbZZ5WYmChJ5/xFKDg4WL1795YkdezYUSkpKRX6XABqtrU/btKbP25Vfot2Ks9PNovFovxGzfX58aPKzs0963atW7fW4sWLFRoaqrS0NE2aNEmRkZG68sor1bVrVw0fPlz33HOPbDab+vTpI+nUz3nJ3D/XiFUAAJxS1v/ZBQD4U3HE6tChg2JjY2W1uv/HpmEYmjnjY1kKWlbol5SgwAjlF2bp2MFozZ2zQIZhKC0tTbGxsSW2+/LLL9WlSxeFhYXJarXq2muv1caNGyVJsbGxOnTokHPbQ4cOKTo62vm5AwICnK9ZrVbZ7faqfFQANciJP/5Q0toNym/QtML7GlH1dNJh6Odfd5T5emhoqEJDQyVJMTExuuqqq7R582bn60OGDNG8efM0Z84cde7cWTExMc5lhGb6uWa1WhUREaH69eurdevW6tSpk1q0aKHY2FiFhIQQrgDAGwwTPmog4hUAlIMnI9aCTxcr63hshX9JCfAPVVhInI798Zu2/piuDz/4UHFxcSWWDEpS/fr1tWHDBhUVFUmSVq1apebNm0uSevTooe3bt2vv3r2SpPnz56tfv35V/1AAarxX53+m7KatKn8Am02LNv3k/Nl1umPHjjnPjs3JydGqVavUqlWrEq9LUl5enmbNmqURI0ZUfg4XIlYBAFA+LBsEgApw93JCwzC0ecNe+fs1q9T+bZpdp+27P1dySq627bbq9ddflSRNnz5dCQkJ6tWrl2666Sbt3btXw4YNk7+/v+rWravJkydLkkJCQjRlyhTdd999stvtatGihXM5IXzT/v37lZiYqPT0dIWGhioxMVHNmpX+98swDM2YMUNr1qxx/kI9ZcoUNWzYUNKpyPnSSy/Jbrfrggsu0LRp01SrVq1Sx0lMTFSbNm00bNgwt382+I5Dh1P1m8MqSyXCf9pXC5SzY5uKsrO07ftvdfXalfr2669L/FxbtmyZFixYIJvNJrvdrr59++q6665zHmP8+PEyDEOFhYUaMGCA1/79ZBkgAACVYzEMo4aedAYAVVdUVOTSiLVx42a99+YvCgqoU/XZLLv1zIvjznrtK9QMY8eO1TXXXKOBAwfqu+++0/vvv6+kpKRS2y1fvlxJSUl6++235efnp7feeku7d+/W008/rdzcXF1//fWaPXu2mjRpomeeeUYhISGaMGFCqeMQr1CW1z/6RCtDoysVr87U4tDv+uedo6o+lAcQqwDAd2VmZioiIkKdb/mXbAFB3h7HyV6Qp00fPqqMjAyFh4d7exyPYdkgAFSBq5cTbvt5twL9o1wyW/7JEP3+e7JLjgXfdOLECe3YsUNXX321JKlv3746dOhQieuana6wsFD5+fkyDEM5OTmKjo6WJK1du1Zt2rRRkyZNJElDhw7V119/fdb3TU5O1rhx43TjjTfqgQceUGFhoWs/GHxOWm6eS8KVJB05eerfUTNiGSD+v717D7K7rPM8/jnpSxpyaewQkiAkhstEjKiYMGvcIcgyBs1wUQGZKRYRBqZYmJko4yzlpQTBHXbUmrXEQTdTKiI13hZ1QYLCZoAwigoSL4OiCIQAJmCidC7a6cv57R+B1pAGknSf0093Xq+qXxU5ffqX71FCVb/zPL8HgMawbRBgBIzUdsJN3dtSq00ekZn2aZ+e+3788xx++GEjcj/GnieeeCLTp08fPFWtVqtlxowZWb9+/U7PQlu8eHG+//3v54QTTsikSZMyffr0LF++PEmyfv36zJo1a/C9Bx544OC/40MF25///Oe5+uqr09bWlvPPPz8rV67MG97whgZ+Ukr3m229I3avTS1t6e7uzn777Tdi99xTVlYBQHNYeQUwgoa7Equqj9xqglqtJdtG8AdGxqZd/UH6/vvvzyOPPJKbb745N998c44++uh86EMf2u37JMlxxx2Xjo6OtLS0ZP78+Xnsscd2e27Gl5F7MmBStbSM+mq+1tbW7LfffpkzZ07mzJljZRXAeDbaJws6bTCJlVcADbGnK7Fa20fu7xT6+n+XafsP/9lZjF3P/PvX39+f1tbWVFWVJ554IjNnztzpvTfeeGMWLFiQKVOmJElOPPHELFu2LEkyc+bM3H333YPv/eUvf5kDDjjgOeNse3v74D8/8wBt9m4TR/CE1tbebZk8eWRWqO6p/v7+PPXUU3nqqaeSJB0dHZkyZcrgKqy2trZRnQ8AxhsrrwAaaHdXYk2fPiX1+s7HwO+J/urJvHrBK0bkXoxNXV1dmTdvXm6++eYkycqVKzNr1qydtgwmyYtf/OLcfffd6e/f/u/fnXfemUMPPTRJsmjRovzkJz/JmjVrkiRf/vKXs2TJkuZ8CMaF6fuO3INup7VOyD777DNi9xsJPT09+dWvfpWHHnooP/rRj3Lfffdl7dq1+c1vfjPqq8QAYDyw8gqgCXZ1JdYxx/5xvn37/03HhNnD/j07X1RPV9fIPPydses973lPPvCBD+Qzn/lMJk2alMsuu2zwa1dccUUWL16cY489Nm9961uzZs2anHHGGWlra8v++++f97znPUmSSZMm5X3ve1/+7u/+LgMDAznssMN2uA+8kMOnT8u9W7amZd9Jw7pPVVU5cN+JIzRV4/T09AwGrcTKLICxrFZtv0pR0izNVKtKPa4FYBzr7+9/zoh15QeXp/uJg4d1/4GB3rzqtQM587++ZVj3ARgJvb29+ZtPfjqbD3vZsO5TrXss7198dI44/PARmmx0iFkA5du0aVM6Ozuz4Iz/kZb2kVtBPFwDvT35/hffm+7u7kydOnW0x2ka2wYBRsHzbSc85c2L01t/fHj33/eRnHra0uGOCTAi2tvbc+xLDkq1ZfMe36Oq13NE/2/HfLhKbDMEgN0lXgGMoqEi1svmvzSvWNCZvv4te3TPvvov85a3HpOOjnL+hgjgL076s7zkiUdS7eED/Dsf/EmW/fnpIzxVGcQsgIKN9smCThtMIl4BFOHZEevt556eOS/dkt7+7t26T2/9l1ly0qE5+o+PatCkAHumVqvlfeeenQMfvC/1vt5d/r6qqjLlwZ/m4hPfkM7OzgZOWA4xCwB25JlXAAXq7+/PY489ln/535/Lt1atSWt9Tmq15/77hv6BbWmbtDan/fmxWbDglU2cFGD39PT05Oov/p/c2z8h9VkHPe9760/9Ooc99UT+5rS3ZMYB05s0Yfk8Mwug8QafefXWAp959aW975lX4hVAwXp6evLd7343/3rdDXnoF7/Obze3piXT0jKhNX0DPUnLr/OiaS152ZEH5pQ3nZCJE8s/hQsgSe67/2e58a7v5cHNW7Np3ynJi6YltVqqzZsyqfvXObijLce+bF7+y39+bWq12miPWzQxC2Dk/WG8am0rJ17194lXABSqr68v69aty0MPPZQfrP6PbN3627yoqzOveMX8TJ482Q92wJhUr9czMDCQNY88kp89vCb1ej0Hz5qVlx5+mAAzDGIWwPCJV2VpHe0BAHhhbW1tmT17dmbPnp3Xve51oz0OwIhauHBhqqrKtm3bsnnz5mzZsiWbN2/2fKc91NPTM/jcrETMAmDsE68AABh1tVotHR0d6ejoyPTp08WsESRmAQxDVW2/SlHSLE0kXgEAUBwxq3HELADGGvEKAIDiiVmNI2YBUDrxCgCAMUfMahwxC+D3atX2qxQlzdJM4hUAAGOemNU4YhYAo028AgBg3BGzGkfMAqDZxCsAAMY9MatxxCxgXKuevkpR0ixNJF4BALDXEbMaR8wCYKSJVwAA7PXErMYRswAYLvEKAACeRcxqHDELGEtq9e1XKUqapZnEKwAAeAFiVuOIWQC8EPEKAAB2k5jVOGIWAM8mXgEAwDCJWY0jZgGjymmDRRCvAABghIlZjSNmAex9xCsAAGgwMatxxCyA8U+8AgCAJhOzGkfMAkZSrdp+laKkWZpJvAIAgFEmZjWOmAUw9olXAABQGDGrccQsgLFHvAIAgMKJWY0jZgHPq6q2X6UoaZYmEq8AAGCMEbMaR8wCKI94BQAAY5yY1ThiFsDoE68AAGCcEbMaR8yCvYvTBssgXgEAwDgnZjWOmAXQeOIVAADsZcZ6zPrwhz+cVatWZd26dfnCF76Qww47bMj33XPPPVm2bFnmzJkz+NqnP/3pdHR0JEmuvfbafP3rX09VVZkzZ04uvfTSTJkyZaf7XHbZZTniiCNyxhlnvOBsYhbAyBOvAABgLzfWYtbxxx+ft73tbTnvvPNe8L2HHHJIPve5z+30+ne+853cdNNN+cxnPpNJkyZl+fLlufrqq3PJJZeM6KxiFoxx1dNXKUqapYnEKwAAYAelx6xXv/rVw77HAw88kKOOOiqTJk1KkhxzzDG54IILnjNePfzww7nwwguzfv36HHroofmHf/iHPQpPYhbA7hOvAACA51V6zHo+jzzySM4888y0tLTkpJNOyumnn54kOeKII/KVr3wlGzduTFdXV1asWJGtW7emu7s7nZ2dO93n5z//ea6++uq0tbXl/PPPz8qVK/OGN7xh2POJWQAvTLwCAAB2y1iJWS996UuzYsWKTJ48OU888USWLVuW/fbbL69//euzcOHCnHnmmXnHO96RlpaWHHfccUmS1tahf0Q67rjjBp+VNX/+/Dz22GMNmVnMgrI4bbAM4hUAADAspcasyZMnD/7zjBkzcsIJJ2T16tV5/etfnyQ57bTTctpppyVJfvzjH2fGjBmD2wifrb29ffCfW1paMjAw0MDJf0/MAkgmjPYAAADA+PJMzJo+fXrmzp2bI488MvPnz8/s2bPT1dXVtOCyYcOG1Ov1JMnWrVtz5513Zt68eTt8PdkeiD75yU/mrLPOaspcw/FMyHrooYfyox/9KPfdd1/Wrl2b3/zmN0WsdgPKsmrVqpx00kk58MADU6vV8rWvfe0Fv+eOO+7IggUL0tHRkUMOOSSf/OQnGz/oC7DyCgAAaKiRXpn1j//4j7njjjuycePGXHTRRdlnn30GfyC74oorsnjx4hx77LFZuXJlrr/++sGVUscff3xOPvnkwftcdNFFqaoqfX19Wbp0ac4444yR/ugNZ2UWNFhVbb9KsZuzbN26Na985Stzzjnn5NRTT33B9z/88MNZunRpzj///Fx33XX51re+lQsvvDDTp0/fpe9vlFpVlfT/AgAAsLcpZZvheCRmwZ7ZtGlTOjs785qll6e1rWO0xxnU39eT76x4f7q7uzN16tTd+t5arZavfvWredOb3vSc77nkkktyww035Kc//engaxdccEF++MMf5q677trTsYfNyisAAGBUlfrMrPHAyiwYnzZt2rTDrydOnJiJEycO+7533XVXlixZssNrJ5xwQj71qU+lr69v1P6bIV4BAABFEbMaR8yC3VPqaYMHH3zwDq9feumlueyyy4Z9//Xr12fGjBk7vDZjxoz09/dnw4YNmTVr1rB/jz0hXgEAAEUTsxpHzIKx6dFHH91h2+BIrLp6Rq1W2+HXzzxt6tmvN5N4BQAAjCliVuOIWTA2TJ06dbefebUrZs6cmfXr1+/w2pNPPpnW1tZMmzZtxH+/XSVeAQAAY5qY1ThiFnu96umrFA2eZdGiRbnxxht3eO2WW27JwoULR/XPu3gFAACMK2JW44hZMLZs2bIlv/jFLwZ//fDDD+cHP/hBurq6Mnv27Lz73e/O448/nmuvvTbJ9pMFP/7xj+fiiy/O+eefn7vuuiuf+tSn8vnPf360PkIS8QoAABjnxKzGEbOgbPfcc0+OO+64wV9ffPHFSZKzzz4711xzTdatW5e1a9cOfn3u3LlZsWJF3vnOd+af//mfc+CBB+ZjH/tYTj311KbP/odq1TNP3gIAANgLiVmNI2YxVm3atCmdnZ157QmXp7WtY7THGdTf15Nvf/P96e7ubsgzr0pl5RUAALBXszKrcazMAkaCeAUAAPAHxKzGEbOAPSFeAQAAPA8xq3HELIpXr7ZfpShpliYSrwAAAHaDmNU4YhYwFPEKAABgGMSsxhGzgES8AgAAGFFiVuOIWTRd9fRVipJmaSLxCgAAoIHErMYRs2DvIF4BAAA0kZjVOGIWjE/iFQAAwCgSsxpHzGK4aklqBW3Vq432AKNEvAIAACiImNU4YhaMTeIVAABAwcSsxhGzYGwQrwAAAMYQMatxxCx2UlXbr1KUNEsTiVcAAABjmJjVOGIWlEG8AgAAGEfErMYRs2B0iFcAAADjmJjVOMOJWUuWLMn69eszYcKETJkyJVdddVVe9apX7fCeNWvW5O1vf3tWr16dww8/PPfcc88OX//IRz6Sa665Jq2treno6MhVV12Vo48+OmvWrMnChQuzYcOGEf/Me5taVdhpgwXN0kziFQAAwF5EzGqc54tZU6ZMSWvr738E/9KXvpT99tsvSfK1r30t5557bu69994d7jd16tR88IMfTHd3dy699NIdvvbDH/4wV111Ve67775Mnjw51113XS666KJ873vfa+yHhFEgXgEAAOzFxKyR87vf/S7fu+v6tNceSHvrr9LW8ttUVS29A53p6Tsg+898XU465W2ZOnXqYLhKku7u7kyYMGGn+3V1deVP/uRPcvvttw/5+/X19WXr1q2ZPHlynnrqqRx00EE7fP39739/brrppnR3d+djH/tYli5dOpIfF5pGvAIAAGCQmLX7qqrKv6/6fKa2rcx5b9mSyZOeHaJ6kjyRtY/9MJ+++vOZ80d/lVPedFbOOeec3HbbbUmSb3zjG7v1e77yla/MxRdfnLlz56arqysTJ07MqlWrBr++cePGLFiwIJdffnm+8Y1vZNmyZeLVnqievkpR0ixNJF4BAADwnMSs59fT05N/u/mKnHv6LzJrxoQkO6+gesbsgyZk2Tkb8t17/2eu+l93Z/ny5eno6MhnP/vZ/P3f/31WrFixy7/vI488khtuuCEPPvhgZs2alY9//OM588wzB1dpTZo0KaecckqSZNGiRXnwwQeH8zFhVD33nyoAAAB4lmdi1vTp0zN37twceeSRmT9/fmbPnp2urq696sS9gYGBrLz5A3nX+c+Eq13zn15dz4mLb8nyT1ySgYGBnH322bntttuycePGXb7Hl7/85bz85S/PrFmzkiTnnHNOVq1alYGBgSTbn7f1jJaWlsHXYSyy8goAAIA9tjevzLrzts/mgr94KBMn7t66kE2bB9LRXuXIubfklm9+NT3bWjJt2rR0dXXt8j0OOeSQXHvttdmyZUsmT56cG2+8MUcccURaWlp292PwPGpVlVpVzl69kmZpJvEKAACAEbO3xKxf/3pjDpp2R/aftvsbmro31XP6eevyu54qG596e+a99Oh8/etfT61Wy3nnnZeTTz45J598crZt25ZDDz0027ZtS3d3dw466KCcddZZufLKK/PmN785d999dxYuXJiJEydmypQpue666xrwSWH01apqL812AAAANN14iVn/dssnsuysO9LaWhvWfX5wX5V1PVfmz/7stBGajJGwadOmdHZ25pjXXZrW1o4X/oYm6e/vyZ23fyDd3d2ZOnXqaI/TNFZeAQAA0DTjZWXW5IkPDTtcJcmr5tdy53VfT7X01NRqw78fI6z+9FWKkmZpIvEKAACAUTMWY1ZfX18m7/OrEbtfa+2J9Pb2ZuLEiSN2TxhPxCsAAACKMRZi1saNG/PimT1JRmalVFvr5tTre+mSGtgF4hUAAADFGgsxaySIV2Vy2mAZxCsAAADGjBJi1rRp0/LA6o4k20bkfn39U9La6sdzeC7+dAAAADBmjUbMamtry5bfTU/y2Ijcr7+a6XlX8DzEKwAAAMaNZsWszdsOSV/fo2lrG95zr1b/R5VD571x2PPQINXTVylKmqWJxCsAAADGrUbFrKMWvjVf++Z3cvqJvcOa7/bvHpT/9s4Th3UPGO/EKwAAAPYaIxWzurqm5Uf3HpsNG7+Z/adN2KNZbrurNS876q+z77777tH3w95CvAIAAGCvNZyYdcxxZ+cT//pA/vtfPZSJE3cvYD34SJX7Hn59LvzbU0biY9AoVbX9KkVJszSReAUAAABP252Y1dLSkj9demk+/C8fzLmn/SIHzty15199594J+d5P/jQX/u2HnTIIu8CfEgAAAHgOuxKzlr7pilz/b1/IlLaVOW3p5kyeNPQqrLWP1fPVW2dkzh+dn4uWnZm2trYmfxoYm8QrAAAA2EXPFbPmzLkkTz55Tj5zwzWp9d+fjrYn09by29SrWvoGOtPTd0CmzXxdzvvrt2fKlCmj/THYRbVq+1WKkmZpJvEKAAAA9tCzY9bLXvah9PX1pbe3N319fanX69lnn33S0dGRCRP27MHusLcTrwAAAGCE1Gq1tLe3p729fbRHgXFDvAIAAAAYitMGi2DNIgAAAADFEq8AAAAAKJZtgwAAAABDqNW3X6UoaZZmsvIKAAAAgGKJVwAAAAAUy7ZBAAAAgKE4bbAIVl4BAAAAUCzxCgAAAIBi2TYIAAAAMJTq6asUJc3SRFZeAQAAAFAs8QoAAACAYtk2CAAAADCEWlWlVtAJfyXN0kxWXgEAAABQLPEKAAAAgGLZNggAAAAwlKrafpWipFmayMorAAAAAIolXgEAAABQLNsGAQAAAIZSJamP9hB/YO/cNWjlFQAAAADlEq8AAAAAKJZtgwAAAABDqFVVagWd8FfSLM1k5RUAAAAAxRKvAAAAACiWbYMAAAAAQ6mSlLRVr6BRmsnKKwAAAACKJV4BAAAAUCzbBgEAAACGUlWFbRssaJYmsvIKAAAAgGKJVwAAAAAUy7ZBAAAAgKHUk9RGe4g/UB/tAUaHlVcAAAAAFEu8AgAAAKBYtg0CAAAADKFWVakVdMJfSbM0k5VXAAAAABRLvAIAAACgWLYNAgAAAAylqrZfpShpliay8goAAACAYolXAAAAABTLtkEAAACAodg2WAQrrwAAAAAolngFAAAAQLFsGwQAAAAYim2DRbDyCgAAAIBiiVcAAAAAFMu2QQAAAICh1JPURnuIP1Af7QFGh5VXAAAAABRLvAIAAACgWLYNAgAAAAyhVlWpFXTCX0mzNJOVVwAAAAAUS7wCAAAAoFi2DQIAAAAMpaq2X6UoaZYmsvIKAAAAgGKJVwAAAAAUy7ZBAAAAgKHUq6RW0Fa9ekGzNJGVVwAAAAAUS7wCAAAAoFi2DQIAAAAMxWmDRbDyCgAAAIBiiVcAAAAAFMu2QQAAAIAhFbZtMCXN0jxWXgEAAABQLPEKAAAAgGLZNggAAAAwFKcNFsHKKwAAAACKJV4BAAAAUCzbBgEAAACGUq9S1Al/9YJmaSIrrwAAAAAolngFAAAAQLFsGwQAAAAYSlXffpWipFmayMorAAAAAIolXgEAAABQLNsGAQAAAIZSVduvUpQ0SxNZeQUAAABAscQrAAAAAIpl2yAAAADAUOpVkoK26tULmqWJrLwCAAAAoFjiFQAAAADFsm0QAAAAYChOGyyClVcAAAAAFEu8AgAAAKBYtg0CAAAADKVKWVv1Chqlmay8AgAAAKBY4hUAAAAAxbJtEAAAAGAoThssgpVXAAAAAOPU1Vdfnblz56ajoyMLFizInXfe+Zzvvf3221Or1Xa67r///iZOvDPxCgAAAGAc+uIXv5h3vOMdee9735vVq1fnmGOOyRvf+MasXbv2eb/vZz/7WdatWzd4HX744U2aeGjiFQAAAMBQ6vXyrt3wT//0T/nLv/zLnHfeeTniiCPy0Y9+NAcffHA+8YlPPO/3HXDAAZk5c+bg1dLSMpz/FYdNvAIAAAAYQzZt2rTDtW3btp3e09vbm+9///tZsmTJDq8vWbIk3/72t5/3/kcddVRmzZqV448/PrfddtuIzr4nxCsAAACAMeTggw9OZ2fn4HXllVfu9J4NGzZkYGAgM2bM2OH1GTNmZP369UPed9asWVm+fHmuv/76fOUrX8m8efNy/PHHZ9WqVQ35HLvKaYMAAAAAQyn0tMFHH300U6dOHXx54sSJz/kttVrtWbeodnrtGfPmzcu8efMGf71o0aI8+uij+chHPpLFixcPZ/JhsfIKAAAAYAyZOnXqDtdQ8Wr//fdPS0vLTqusnnzyyZ1WYz2f17zmNXnggQeGPfNwiFcAAAAA40x7e3sWLFiQW2+9dYfXb7311rz2ta/d5fusXr06s2bNGunxdottgwAAAABDKXTb4K66+OKLc9ZZZ2XhwoVZtGhRli9fnrVr1+aCCy5Ikrz73e/O448/nmuvvTZJ8tGPfjQveclLMn/+/PT29ua6667L9ddfn+uvv37EP8ruEK8AAAAAxqEzzjgjGzduzOWXX55169bl5S9/eVasWJE5c+YkSdatW5e1a9cOvr+3tzfvete78vjjj2efffbJ/Pnzc9NNN2Xp0qWj9RGSJLWqKikhAgAAAIyuTZs2pbOzM3+6/7lpndA+2uMM6q/35v9t+HS6u7t3eGD7eGflFQAAAMBQ6lWSgtb81AuapYk8sB0AAACAYolXAAAAABTLtkEAAACAIVRVPVVVH+0xBpU0SzNZeQUAAABAscQrAAAAAIpl2yAAAADAUKqqrBP+qoJmaSIrrwAAAAAolngFAAAAQLFsGwQAAAAYSlUlKWirnm2DAAAAAFAW8QoAAACAYtk2CAAAADCUej2p1Ud7it+rCpqliay8AgAAAKBY4hUAAAAAxbJtEAAAAGAoThssgpVXAAAAABRLvAIAAACgWLYNAgAAAAyhqtdTFXTaYOW0QQAAAAAoi3gFAAAAQLFsGwQAAAAYitMGi2DlFQAAAADFEq8AAAAAKJZtgwAAAABDqVdJraCterYNAgAAAEBZxCsAAAAAimXbIAAAAMBQqipJfbSn+D3bBgEAAACgLOIVAAAAAMWybRAAAABgCFW9SlXQaYOVbYMAAAAAUBbxCgAAAIBi2TYIAAAAMJSqnrJOGyxoliay8goAAACAYolXAAAAABTLtkEAAACAIThtsAxWXgEAAABQLPEKAAAAgGLZNggAAAAwFKcNFkG8AgAAABhCf/qSgh4z1Z++0R5hVIhXAAAAAH+gvb09M2fOzL+vXzHao+xk5syZaW9vH+0xmqpW7a2PqgcAAAB4Dj09Pent7R3tMXbS3t6ejo6O0R6jqcQrAAAAAIrltEEAAAAAiiVeAQAAAFAs8QoAAACAYolXAAAAABRLvAIAAACgWOIVAAAAAMUSrwAAAAAolngFAAAAQLHEKwAAAACKJV4BAAAAUCzxCgAAAIBiiVcAAAAAFEu8AgAAAKBY4hUAAAAAxRKvAAAAACiWeAUAAABAscQrAAAAAIolXgEAAABQLPEKAAAAgGKJVwAAAAAUS7wCAAAAoFjiFQAAAADFEq8AAAAAKJZ4BQAAAECxxCsAAAAAiiVeAQAAAFAs8QoAAACAYolXAAAAABRLvAIAAACgWOIVAAAAAMUSrwAAAAAolngFAAAAQLHEKwAAAACKJV4BAAAAUCzxCgAAAIBiiVcAAAAAFEu8AgAAAKBY4hUAAAAAxRKvAAAAACiWeAUAAABAscQrAAAAAIolXgEAAABQLPEKAAAAgGKJVwAAAAAUS7wCAAAAoFjiFQAAAADFEq8AAAAAKJZ4BQAAAECxxCsAAAAAiiVeAQAAAFAs8QoAAACAYolXAAAAABRLvAIAAACgWOIVAAAAAMUSrwAAAAAolngFAAAAQLHEKwAAAACKJV4BAAAAUCzxCgAAAIBiiVcAAAAAFEu8AgAAAKBY4hUAAAAAxRKvAAAAACiWeAUAAABAscQrAAAAAIolXgEAAABQLPEKAAAAgGKJVwAAAAAUS7wCAAAAoFjiFQAAAADFEq8AAAAAKJZ4BQAAAECxxCsAAAAAiiVeAQAAAFAs8QoAAACAYv1/TjpjU4soVy4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax, nodes = ncd.plot_ttr_network(\n", " dfROHR,\n", " dn_col=\"DN\",\n", " fk_ki_col='tki',\n", " fk_kk_col='tkk',\n", " geometry_col=\"geometry\",\n", " dt_col='dt',\n", " show_edge_dt=True,\n", " ttr_norm=\"percentile\", ttr_percentiles=(5, 95),\n", " linewidth_range=(7, 15),\n", " node_size=200,\n", " highlight_keys=[5136506604482101815], # source tk \n", " highlight_marker_size=250,\n", " show_values=True,\n", " annotation_fmt=\"{:.2f}\"\n", ")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "c693abc7", "metadata": {}, "source": [ "The network has a constant pressure of 100 bar on the left-most node. And equal constant negative volume flow on all right-most nodes. Simulating a source on the left and consumers on the right." ] }, { "cell_type": "markdown", "id": "eaabee7d", "metadata": {}, "source": [ "What we can obeserve already here is that the fluid age in the upper branch is lower due to the lower diameter of the upper pipes that leads to a higher velocity and therefore a lower fluid age." ] }, { "cell_type": "markdown", "id": "2530ea7e", "metadata": {}, "source": [ "## Comparision: Travel Time Matrix" ] }, { "cell_type": "markdown", "id": "fb86d7c7", "metadata": {}, "source": [ "### Preparing Data" ] }, { "cell_type": "markdown", "id": "d882b591", "metadata": {}, "source": [ "### Algorithm Implmentation" ] }, { "cell_type": "code", "execution_count": 26, "id": "730d6335", "metadata": {}, "outputs": [], "source": [ "TMAX_DETECT = 1.0e12" ] }, { "cell_type": "code", "execution_count": 27, "id": "9f805f34", "metadata": {}, "outputs": [], "source": [ "def setup_graph(df_data_results_edges):\n", " \"\"\"Setup graph from edges data and results.\n", "\n", " Parameters\n", " ----------\n", " df_data_results_edges: pandas.DataFrame\n", " Edges data and results.\n", "\n", " Returns\n", " -------\n", " G : networkx.Graph\n", " Graph.\n", " \"\"\"\n", "\n", " # Nodes: index mapping (here via tk of nodes, alternatively via names of nodes)\n", " list_nodes_tk = sorted(list(set(list(df_data_results_edges[\"tki\"]) + list(df_data_results_edges[\"tkk\"]))))\n", " map_nodes_tk_ind = {list_nodes_tk[ii]: ii for ii in range(len(list_nodes_tk))}\n", "\n", " # Adapt DataFrame\n", " df_data_results_edges[\"indi\"] = df_data_results_edges[\"tki\"].apply(lambda x: map_nodes_tk_ind[x])\n", " df_data_results_edges[\"indk\"] = df_data_results_edges[\"tkk\"].apply(lambda x: map_nodes_tk_ind[x])\n", "\n", " df_data_results_edges[\"indi_new\"] = df_data_results_edges[[\"indi\", \"indk\"]].min(axis=1)\n", " df_data_results_edges[\"indk_new\"] = df_data_results_edges[[\"indi\", \"indk\"]].max(axis=1)\n", " df_data_results_edges[\"dt_new\"] = np.sign(df_data_results_edges[\"indk\"] - df_data_results_edges[\"indi\"])*df_data_results_edges[\"dt\"]\n", "\n", " # Setup graph\n", " G = networkx.Graph()\n", " for _, row in df_data_results_edges.iterrows():\n", " G.add_edge(\n", " row['indi_new'], # Start node\n", " row['indk_new'], # End node\n", " # Additional edge attributes\n", " dt=row['dt_new']\n", " )\n", "\n", " # Out\n", " return G, map_nodes_tk_ind" ] }, { "cell_type": "code", "execution_count": 28, "id": "b93a4a83", "metadata": {}, "outputs": [], "source": [ "def bfs_observedNodes(G, source, tmax):\n", " \"\"\"Breadth-first-search starting at source.\n", "\n", " Parameters\n", " ----------\n", " G : networkx.Graph\n", " Graph.\n", " source : int\n", " Source node.\n", " tmax : float\n", " Maximum travel time.\n", " \"\"\"\n", "\n", " visited = set([source])\n", " neighbors = G.neighbors\n", " queue = deque([(source, neighbors(source))])\n", "\n", " dt_travel_sum = {source: 0.0}\n", "\n", " while queue:\n", " parent, children = queue[0]\n", "\n", " try:\n", " child = next(children)\n", "\n", " edge = (min(parent, child), max(parent, child))\n", " sign_dt = np.sign(child - parent)\n", "\n", " dt_travel = sign_dt*G[edge[0]][edge[1]]['dt']\n", " dt_travel_sum[child] = dt_travel_sum[parent] + np.abs(dt_travel)\n", "\n", " if ((child not in visited) and (dt_travel_sum[child] < tmax) and dt_travel < 0.0):\n", " yield parent, child\n", " visited.add(child)\n", " queue.append((child, neighbors(child)))\n", "\n", " except StopIteration:\n", " queue.popleft()" ] }, { "cell_type": "code", "execution_count": 29, "id": "022396e4", "metadata": {}, "outputs": [], "source": [ "def setup_travelTimeMatrix(df_data_results_edges):\n", " \"\"\"Setup travel time matrix from edges data and results.\n", "\n", " Parameters\n", " ----------\n", " df_data_results_edges: pandas.DataFrame\n", " Edges data and results.\n", "\n", " Returns\n", " -------\n", " TMat : numpy.ndarray\n", " Travel time matrix.\n", " map_nodes_tk_ind : dict\n", " Mapping nodes tk to index.\n", " \"\"\"\n", "\n", " # Setup graph\n", " G, map_nodes_tk_ind = setup_graph(df_data_results_edges)\n", "\n", " # Find sets of observed nodes by bfs search and setup matrix V\n", " obsNodes = {}\n", " obsNodesL = {}\n", "\n", " travelTimesAccObsNodesDict = {}\n", "\n", " for iSens in G.nodes:\n", "\n", " bfs_edges = list(bfs_observedNodes(G, iSens, TMAX_DETECT))\n", "\n", " nodesSet = set()\n", " endNodeLDict = {}\n", "\n", " for (lli, llk) in bfs_edges:\n", " nodesSet.add(lli)\n", " nodesSet.add(llk)\n", " edgex = (min(lli, llk), max(lli, llk))\n", " endNodeLDict[llk] = G[edgex[0]][edgex[1]]['dt']\n", "\n", " if (len(nodesSet) > 0):\n", " obsNodes[iSens] = nodesSet - {iSens}\n", " obsNodesL[iSens] = endNodeLDict\n", "\n", " # Calculate travel time matrix data\n", " edgesListUse = []\n", " for edgex in bfs_edges:\n", " (ix, kx) = edgex\n", " ix_new, kx_new = min(ix, kx), max(ix, kx)\n", " weight = abs(G[ix_new][kx_new]['dt'])\n", " edgesListUse.append((ix_new, kx_new, weight))\n", "\n", " Gtrav = networkx.Graph()\n", " if (len(edgesListUse) > 0):\n", " Gtrav.add_weighted_edges_from(edgesListUse)\n", " travelTimesAccObsNodesDict[iSens] = networkx.single_source_dijkstra_path_length(\n", " Gtrav, source=iSens, cutoff=None, weight='weight')\n", " \n", "\n", " # Setup travel time matrix\n", " rowsTTrav = []\n", " columnsTTrav = []\n", " dataTTrav = []\n", "\n", " for iSens in obsNodes.keys():\n", " # travel time from node to sensor\n", " ttravs = travelTimesAccObsNodesDict[iSens]\n", " for iObserved in ttravs:\n", " rowsTTrav.append(iSens)\n", " columnsTTrav.append(iObserved)\n", " dataTTrav.append(ttravs[iObserved])\n", "\n", " TMatSparse = csc_matrix((dataTTrav, (rowsTTrav, columnsTTrav)), shape=(len(G.nodes), len(G.nodes)))\n", "\n", " # Trafo to dense matrices\n", " TMat = 1.0*TMatSparse.toarray()\n", "\n", " # Out\n", " return TMat, map_nodes_tk_ind" ] }, { "cell_type": "markdown", "id": "56d89fe7", "metadata": {}, "source": [ "### Calculation" ] }, { "cell_type": "code", "execution_count": 30, "id": "5f4fa4d4", "metadata": {}, "outputs": [], "source": [ "TMat, map_nodes_tk_ind = setup_travelTimeMatrix(dfROHR)" ] }, { "cell_type": "code", "execution_count": 31, "id": "aec45ca1", "metadata": {}, "outputs": [], "source": [ "TMat=TMat/3600" ] }, { "cell_type": "code", "execution_count": 32, "id": "1f4e3c57", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0. , 0. , 1.53, 0.74, 0. , 0. , 0. , 0. , 0.49],\n", " [0. , 0. , 1.59, 0. , 0. , 0.8 , 0. , 0. , 0. ],\n", " [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ],\n", " [0. , 0. , 0.8 , 0. , 0. , 0. , 0. , 0. , 0. ],\n", " [0. , 0. , 1.53, 0.74, 0. , 0. , 0. , 0. , 0.49],\n", " [0. , 0. , 0.8 , 0. , 0. , 0. , 0. , 0. , 0. ],\n", " [0. , 1.59, 3.18, 0. , 0. , 2.39, 0. , 0. , 0. ],\n", " [0. , 1.59, 3.18, 0. , 0. , 2.39, 0. , 0. , 0. ],\n", " [0. , 0. , 1.04, 0.25, 0. , 0. , 0. , 0. , 0. ]])" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.set_printoptions(linewidth=200)\n", "TMat.round(2)" ] }, { "cell_type": "markdown", "id": "263a5932", "metadata": {}, "source": [ "This travel time matrix differs to the fluid age calculated by SIR 3S already in the sense that we can only consider one source at a time. In our given example model this is the case. If we had two sources we would need to consider them (two differnt cols) seperatley." ] }, { "cell_type": "markdown", "id": "0c51d28f", "metadata": {}, "source": [ "### Plotting" ] }, { "cell_type": "code", "execution_count": 33, "id": "b396c563", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABK8AAAOsCAYAAACMN5XEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACViklEQVR4nOzdd3hUVcLH8d9k0jsBUihSBUJTiq4oVRQERFiKqIiAysoLKK51xUIUe1kFXUBWDAJWBF2kWWiCoAsCCiJI7wk1CQmpM/f9AzNLSICUKXcy38/zzLNk5s6Zc8GN5Os591oMwzAEAAAAAAAAmJCfpycAAAAAAAAAXAjxCgAAAAAAAKZFvAIAAAAAAIBpEa8AAAAAAABgWsQrAAAAAAAAmBbxCgAAAAAAAKZFvAIAAAAAAIBpEa8AAAAAAABgWsQrAAAAAAAAmBbxCgCAUrBYLKV6rFixwtNTLWLGjBmyWCzau3fvBY8py7kNGzZMdevWddv8L6Xw/Aofx48fd7zWuXNnNW/e/JJjpKWlFRnj9ddfd+WUAQAAUEb+np4AAADeYO3atUW+njBhgpYvX65ly5YVeb5p06bunJZTlOXcateurbFjx7pzeqUyb948JSQkKDo6uszvjYiI0Nq1a3XkyBH169fP+ZMDAABAhRCvAAAohWuuuabI19WrV5efn1+x58935swZhYaGunJqFVaWc4uMjHTXtMqkVatW5V4RZrVadc0111x0dRoAAAA8h22DAAA4SeE2te+//17XXnutQkNDdffdd0uSPv30U3Xr1k0JCQkKCQlRYmKi/vGPfygrK8vx/rfeeksWi0U7d+4sNvbjjz+uwMDAItvivvvuO3Xt2lWRkZEKDQ3Vddddp6VLl7r0HEvaNmixWDRmzBglJyercePGCgkJUdu2bfXjjz/KMAy99tprqlevnsLDw3X99deXeH6uPJd169apQ4cOCg0NVf369fXyyy/Lbrc7ZWwAAAC4HvEKAAAnOnLkiO68807dcccdWrRokUaNGiVJ2rFjh3r27Knp06dryZIlevDBB/XZZ5+pd+/ejvfeeeedCgwM1IwZM4qMabPZNHv2bPXu3VvVqlWTJM2ePVvdunVTZGSkPvjgA3322WeKiYlR9+7dXR6wSrJgwQK99957evnll/Xxxx/r9OnT6tWrlx5++GH98MMPeueddzRt2jRt3bpV/fv3l2EYjve68lxSUlI0ePBg3XnnnZo/f7569OihJ554QrNnz67oKQMAAMBN2DYIAIATnTx5UnPmzNH1119f5PmnnnrK8WvDMHTdddcpMTFRnTp10q+//qqWLVuqWrVquvnmm/XBBx/oueeek5/f2f/G9M033+jw4cMaPny4pLNbEceOHaubb75ZX3zxhWPcnj17qnXr1ho3bpx++uknN5zt/+Tm5uqbb75RWFiYpLOrsfr27avly5drw4YNslgskqRjx47pwQcf1JYtW9SiRQuXn8uJEye0aNEiXX311ZKkG264QStWrNBHH32ku+66qwJnDAAAAHdh5RUAAE5UpUqVYuFKknbv3q077rhD8fHxslqtCggIUKdOnSRJv//+u+O44cOH6+DBg/ruu+8czyUnJys+Pl49evSQJK1Zs0YnT57U0KFDVVBQ4HjY7XbddNNNWrduXZHtiO7QpUsXR7iSpMTERElSjx49HOHq3Of37dsnyfXnEh8f7whXhVq2bOn4fAAAAJgfK68AAHCihISEYs9lZmaqQ4cOCg4O1vPPP69GjRopNDRUBw4cUL9+/ZSdne04tkePHkpISFBycrK6deumU6dOaf78+Ro7dqysVqskKTU1VZI0YMCAC87j5MmTRWKSq8XExBT5OjAw8KLP5+TkSHL9uVStWrXYc0FBQUV+zwEAAGBuxCsAAJzo3FVGhZYtW6bDhw9rxYoVjtVWkpSWllbsWKvVqiFDhmjSpElKS0vTRx99pNzcXMeWQUmO6169/fbbF7zbYVxcXAXPxD0q07kAAADANYhXAAC4WGHQCgoKKvL8u+++W+Lxw4cP16uvvqqPP/5YM2bMULt27dSkSRPH69ddd52io6O1detWjRkzxnUTd4PKdC4AAABwDeIVAAAudu2116pKlSoaOXKkxo8fr4CAAH344Yf65ZdfSjy+SZMmateunV566SUdOHBA06ZNK/J6eHi43n77bQ0dOlQnT57UgAEDFBsbq2PHjumXX37RsWPHNGXKFHecWoVVpnMBAACAa3DBdgAAXKxq1apauHChQkNDdeedd+ruu+9WeHi4Pv300wu+Z/jw4Tpw4IBCQkI0aNCgYq/feeedWr58uTIzM3Xffffphhtu0NixY7VhwwZ17drVlafjdJXpXAAAAOB8FsMwDE9PAgAAoDxmzJih4cOHa+fOnapTp478/cu3qLygoED79u1Tw4YN9dprr+mRRx5x8kwBAABQXmwbBAAAXq9hw4aSpGPHjjkuAl9aaWlpqlKliiumBQAAACdg5RUAAPBaJ06c0J49exxfX3nllWVefWWz2bRx40bH17Vr1+YOhwAAACZCvAIAAAAAAIBpccF2AAAAAAAAmBbxCgAAAAAAAKZFvAIAAAAAAIBpEa8AAAAAAABgWsQrAAAAAAAAmBbxCgAAAAAAAKZFvAIAAAAAAIBpEa8AAAAAAABgWsQrAAAAAAAAmBbxCgAAAAAAAKbl7+kJAAAAAAB8l81mU35+vqen4XMCAgJktVo9PQ2gVIhXAAAAAAC3MwxDKSkpSktL8/RUfFZ0dLTi4+NlsVg8PRXgoohXAAAAAAC3KwxXsbGxCg0NJaC4kWEYOnPmjI4ePSpJSkhI8PCMgIsjXgEAAAAA3MpmsznCVdWqVT09HZ8UEhIiSTp69KhiY2PZQghT44LtAAAAAAC3KrzGVWhoqIdn4tsKf/+55hjMjngFAAAAAPAIZ2wVNAxDa9eulWEYTpiRb2GrJrwF8QoAAAAA4LXWrl2ra6+9VmvXrvX0VAC4CPEKAAAAAOC1Pv/8c0nS3LlzPTwTAK5CvAIAAAAAeCXDMDR37lw1atRIc+fOdcvWwaNHj+q+++7TZZddpqCgIMXHx6t79+6s/AJciLsNAgAAAAC80vr167V//36tWrVKHTp00M8//6y2bdu69DP79++v/Px8ffDBB6pfv75SU1O1dOlSnTx50mWfmZeXp8DAQJeND5gdK68AAAAAAF5p7ty5uvrqq9W+fXtdddVVLt86mJaWptWrV+uVV15Rly5dVKdOHV199dV64okn1KtXL0nS/v371adPH4WHhysyMlK33nqrUlNTHWMMGzZMffv2LTLugw8+qM6dOzu+7ty5s8aMGaOHHnpI1apV04033ihJ+u2339SrVy9FRkYqIiJCHTp00K5duxzvS05OVmJiooKDg9WkSRNNnjzZdb8ZgBux8goAAAAAYGrjx4/X77//Xuz55cuX69FHH5V0dkXU66+/XiTmFEpMTNSzzz5b4XmEh4crPDxcX375pa655hoFBQUVed0wDPXt21dhYWFauXKlCgoKNGrUKA0aNEgrVqwo02d98MEH+r//+z/98MMPMgxDhw4dUseOHdW5c2ctW7ZMkZGR+uGHH1RQUCBJ+ve//63x48frnXfeUatWrbRx40aNGDFCYWFhGjp0aIXPHfAk4hUAAAAAwNQyMzM1Z84cRURE6Pbbb5fVapUk3XHHHRo2bJgkafjw4Tp8+LDy8/MlSQUFBfrkk090+vRpPfTQQ06Zh7+/v2bMmKERI0Zo6tSpat26tTp16qTbbrtNLVu21Hfffadff/1Ve/bsUe3atSVJs2bNUrNmzbRu3TpdddVVpf6shg0b6tVXX3V8PW7cOEVFRemTTz5RQECAJKlRo0aO1ydMmKA33nhD/fr1kyTVq1dPW7du1bvvvku8gtcjXgEAAAAATO2NN95Qu3btNGLECG3btk2zZ892xKFCsbGxmjhxoqSzW/fuvPNOWa1Wff755+rfv7/T5tK/f3/16tVLq1at0tq1a7VkyRK9+uqreu+995SRkaHatWsXmVvTpk0VHR2t33//vUzx6vxrd23atEkdOnRwhKtzHTt2TAcOHNA999yjESNGOJ4vKChQVFRUOc4SMBeueQUAAAAAML0BAwZo06ZNstlsuuKKK/TFF1+UeNwXX3yhK6+8UoZh6JdffnFquCoUHBysG2+8Uc8884zWrFmjYcOGafz48TIMQxaLpdjx5z7v5+dX7K6IhavFzhUWFlbk65CQkAvOx263Szq7dXDTpk2Ox5YtW/Tjjz+W+fwAsyFeAQAAAAC8Qp06dbRixQoNGTJE/fr1K3aHv5MnT6pfv3666667tHz5cl122WVumVfTpk2VlZWlpk2bav/+/Tpw4IDjta1btyo9PV2JiYmSpOrVq+vIkSNF3r9p06ZLfkbLli21atWqEkNXXFycatasqd27d6thw4ZFHvXq1avYyQEmQLwCAAAAAHgNf39/xcbGKjExUTExMUVeq1Klipo0aaLY2Fj5+zv/KjknTpzQ9ddfr9mzZzuubTVnzhy9+uqr6tOnj2644Qa1bNlSgwcP1oYNG/Tf//5Xd911lzp16uTYBnj99ddr/fr1mjlzpnbs2KHx48dry5Ytl/zsMWPGKCMjQ7fddpvWr1+vHTt2aNasWdq+fbskKSkpSS+99JImTpyoP/74Q5s3b1ZycrL++c9/Ov33AXA34hUAAAAAwKvMnTtX/fv3l2EYmjJlihISEjRlyhRJZ69JNXfuXJd8bnh4uP7yl7/ozTffVMeOHdW8eXM9/fTTGjFihN555x1ZLBZ9+eWXqlKlijp27KgbbrhB9evX16effuoYo3v37nr66af12GOP6aqrrtLp06d11113XfKzq1atqmXLlikzM1OdOnVSmzZt9O9//9txDax7771X7733nmbMmKEWLVqoU6dOmjFjBiuvUClYjPM32wIAAAAA4EI5OTnas2eP6tWrp+Dg4DK9d/fu3WrQoIGWLl2qt99+W0uWLNHQoUM1Y8YM9ezZU6NHj9YNN9ygXbt2qX79+i46g8qhIn8OgDux8goAAAAA4DXmzp2rgIAADR06VDt27NC6des0depUrVu3Ttu3b9ewYcPk7++vefPmeXqqAJyEeAUAAAAA8Bpz585Vfn6+br75Zv33v/9V8+bNJUktWrTQunXrdPPNN6ugoMBlWwcBuB/xCgAAAADgNVq1aqW5c+dqypQpCg0NLfJaaGiopkyZorlz5+rKK6/0zAQBOB3XvAIAAAAAuBXXWjIH/hzgLVh5BQAAAADwCNZSeBa///AWxCsAAAAAgFsFBARIks6cOePhmfi2wt//wj8PwKz8PT0BAAAAAIBvsVqtio6O1tGjRyWdvVaVxWLx8Kx8h2EYOnPmjI4eParo6GhZrVZPTwm4KK55BQAAAABwO8MwlJKSorS0NE9PxWdFR0crPj6ecAjTI14BAAAAADzGZrMpPz/f09PwOQEBAay4gtcgXgEAAAAAAMC0uGA7AAAAAAAATIt4BQAAAAAAANMiXgEAAAAAAMC0iFcAAAAAAAAwLeIVAAAAAAAATIt4BQAAAAAAANMiXgEAAAAAAMC0iFcAAAAAAAAwLeIVAAAAAAAATIt4BQAAAAAAANMiXgEAAAAAAMC0iFcAAAAAAAAwLeIVAAAAAAAATIt4BQAAAAAAANMiXgEAAAAAAMC0iFcAAAAAAAAwLeIVAAAAAAAATIt4BQAAAAAAANMiXgEAAAAAAMC0iFcAAAAAAAAwLeIVAAAAAAAATIt4BQAAAAAAANMiXgEAAAAAAMC0iFcAAAAAAAAwLeIVAAAAAAAATIt4BQAAAAAAANMiXgEAAAAAAMC0iFcAAAAAAAAwLeIVAAAAAAAATIt4BQAAAAAAANMiXgEAAAAAAMC0/D09AQAAAAAAALPJyclRXl6ep6dRTGBgoIKDgz09DbciXgEAAAAAAJwjJydH9eqEK+WozdNTKSY+Pl579uzxqYBFvAIAAAAAADhHXl6eUo7atO/nuoqMMM8VlzJO21WnzV7l5eURrwAAAAAAAHxdZISfIiOsnp6GzyNeAQAAAAAAlMAuQ3bZPT0NB7sMT0/BI8yz9g0AAAAAAAA4D/EKAAAAAAAApsW2QQAAAAAAgBLYDLtsJtqpZzPMs4XRnVh5BQAAAAAAANMiXgEAAAAAAMC02DYIAAAAAABQgrN3GzTPvkEzzcWdWHkFAAAAAAAA0yJeAQAAAAAAwLTYNggAAAAAAFACu+wy0/39zDUb92HlFQAAAAAAAEyLeAUAAAAAAADTYtsgAAAAAABACWyGIZthnjv8mWku7sTKKwAAAAAAAJgW8QoAAAAAAACmxbZBAAAAAACAEthlyC7zbNUz01zciZVXAAAAAAAAMC3iFQAAAAAAAEyLbYMAAAAAAAAlsMuQzURb9dg2CAAAAAAAAJgM8QoAAAAAAACmxbZBAAAAAACAEnC3QXNg5RUAAAAAAABMi3gFAAAAAAAA02LbIAAAAAAAQAlshiGbYZ6temaaizux8goAAAAAAACmRbwCAAAAAACAabFtEAAAAAAAoAT2Px9mYaa5uBMrrwAAAAAAAGBaxCsAAAAAAACYFtsGAQAAAAAASmCTIZvMc4c/M83FnVh5BQAAAAAAANMiXgEAAAAAAMC02DYIAAAAAABQAptx9mEWZpqLO7HyCgAAAAAAAKZFvAIAAAAAAIBpsW0QAAAAAACgBPY/H2Zhprm4EyuvAAAAAAAAYFrEKwAAAAAAAJgW2wYBAAAAAABKYJdFNlk8PQ0Hu4nm4k6svAIAAAAAAIBpEa8AAAAAAABgWsQrAAAAAACAEtgN8z3KYsqUKWrZsqUiIyMVGRmpdu3aafHixRd9z8qVK9WmTRsFBwerfv36mjp1agV+B52DeAUAAAAAAFAJ1apVSy+//LLWr1+v9evX6/rrr1efPn3022+/lXj8nj171LNnT3Xo0EEbN27UuHHj9MADD2ju3LlunnlRFsMwytjtAAAAAAAAKq+MjAxFRUVp/W9xCo8wz7qfzNN2tW2WqvT0dEVGRpZrjJiYGL322mu65557ir32+OOPa/78+fr9998dz40cOVK//PKL1q5dW+55VxR3GwQAAAAAACiBzWR3GyycS0ZGRpHng4KCFBQUdPH32myaM2eOsrKy1K5duxKPWbt2rbp161bkue7du2v69OnKz89XQEBABWZffubJhwAAAAAAALik2rVrKyoqyvF46aWXLnjs5s2bFR4erqCgII0cOVJffPGFmjZtWuKxKSkpiouLK/JcXFycCgoKdPz4caeeQ1mw8goAAAAAAMCLHDhwoMi2wYutumrcuLE2bdqktLQ0zZ07V0OHDtXKlSsvGLAslqIrzQqvNnX+8+5EvAIAAAAAACiBWbcNFt49sDQCAwPVsGFDSVLbtm21bt06TZw4Ue+++26xY+Pj45WSklLkuaNHj8rf319Vq1at4OzLj22DAAAAAAAAPsIwDOXm5pb4Wrt27fTtt98Wee6bb75R27ZtPXa9K4l4BQAAAAAAUCmNGzdOq1at0t69e7V582Y9+eSTWrFihQYPHixJeuKJJ3TXXXc5jh85cqT27dunhx56SL///rvef/99TZ8+XY888oinTkES2wYBAAAAAABKZDcsshvm2TZY1rmkpqZqyJAhOnLkiKKiotSyZUstWbJEN954oyTpyJEj2r9/v+P4evXqadGiRfr73/+uf/3rX6pRo4YmTZqk/v37O/U8yspiFF55CwAAAAAAAMrIyFBUVJRWb6mh8AjzbFrLPG1X++aHlZ6eXuprXlUG5vkTAAAAAAAAAM7DtkEAAAAAAIASmPVug76GlVcAAAAAAAAwLeIVAAAAAAAATIttgwAAAAAAACWwyU82E637sXl6Ah5inj8BAAAAAAAA4DzEKwAAAAAAAJgW2wYBAAAAAABKYBgW2Q3z3OHPMNFc3ImVVwAAAAAAADAt4hUAAAAAAABMi22DAAAAAAAAJbDJIpvMs1XPTHNxJ1ZeAQAAAAAAwLSIVwAAAAAAADAttg0CAAAAAACUwGb4yWaYZ92PzfD0DDzDPH8CAAAAAAAAwHmIVwAAAAAAADAttg0CAAAAAACUwC6L7CZa92OXb+4bNM+fAAAAAAAAAHAe4hUAAAAAAABMi22DAAAAAAAAJbDJIpssnp6Gg5nm4k6svAIAAAAAAIBpEa8AAAAAAABgWmwbBAAAAAAAKIHN8JPNMM+6H5vB3QYBAAAAAAAAUyFeAQAAAAAAwLTYNggAAAAAAFACuyyym+gOf2aaizux8goAAAAAAACmRbwCAAAAAACAabFtEAAAAAAAoAR2+clmonU/dnG3QQAAAAAAAMBUiFcAAAAAAAAwLbYNAgAAAAAAlMBm+MlmmGfdj81g2yAAAAAAAABgKsQrAAAAAAAAmBbbBgEAAAAAAEpgl5/sJlr3w90GAQAAAAAAAJMhXgEAAAAAAMC02DYIAAAAAABQApthkc2weHoaDmaaizux8goAAAAAAACmRbwCAAAAAACAabFtEAAAAAAAoAQ2+clmonU/Nu42CAAAAAAAAJgL8QoAAAAAAACmxbZBAAAAAACAEtgNP9kN86z7sRtsGwQAAAAAAABMhXgFAAAAAAAA02LbIAAAAAAAQAm426A5mOdPAAAAAAAAADgP8QoAAAAAAACmxbZBAAAAAACAEtgl2QyLp6fhYPf0BDyElVcAAAAAAAAwLeIVAAAAAAAATIttgwAAAAAAACWwy092E637MdNc3Mk3zxoAAAAAAABegXgFAAAAAAAA02LbIAAAAAAAQAlshp9shnnW/ZhpLu7km2cNAAAAAAAAr0C8AgAAAAAAgGmxbRAAAAAAAKAEdllkl8XT03Aw01zciZVXAAAAAAAAMC3iFQAAAAAAAEyLbYMAAAAAAAAl4G6D5uCbZw0AAAAAAACvQLwCAAAAAACAabFtEAAAAAAAoAQ2+clmonU/ZpqLO/nmWQMAAAAAAMArEK8AAAAAAABgWmwbBAAAAAAAKIHdsMhuWDw9DQczzcWdWHkFAAAAAAAA0yJeAQAAAAAAwLTYNggAAAAAAFACu8nuNmg30VzcyTfPGgAAAAAAAF6BeAUAAAAAAADTYtsgAAAAAABACeyGn+yGedb9mGku7uSbZw0AAAAAAACvQLwCAAAAAACAabFtEAAAAAAAoAQ2WWSTxdPTcDDTXNyJlVcAAAAAAAAwLeIVAAAAAAAATIttgwAAAAAAACXgboPm4JtnDQAAAAAAAK9AvAIAAAAAAIBpEa8AAAAAAHCjBx54QHXr1pXFYtGWLVtKPGbFihUKDQ3VlVde6XhkZ2dLkvbs2aM2bdroyiuvVIsWLTRw4ECdOnVKkrR3715Vq1bNbedS2dn0vzsOmuPhm4hXAAAAAAA4WXZ2tg4cOKDDhw/LZiuaHAYMGKDVq1erTp06Fx2jadOm2rRpk+MREhIiSapRo4ZWr16tTZs2afPmzapZs6YmTJjgsnMBPI0LtgMAAAAA4AS7du/R5I8/1bajJ5SSlaMzfgGSDEUZBaoZGa6r6l+m0XfdqY4dO1boc4KCghy/ttlsyszMVHR0dJFjnnnmGS1cuFDp6emaNGmSevbsWaHPBDyJeAUAAAAAQAXk5ubqydff1Df7U5UbV0uW6BpS9P9eT/vzsflQhuY/NE7DOrXTiMG3X3Lc7du3q3Xr1rJarRo+fLhGjRrleC0vL09XX3219u3bpyuuuELz5893vHbixAm1adNGzz33nJYsWaKxY8cSr8qJuw2ag2+eNQAAAAAATnD06DH1feBhzc+yKC/+MlksF/4x2y8gUCdr1Nc/N2zX/z05/qLjtm7dWgcPHtSGDRv0xRdfaOrUqfrss88crwcGBmrTpk1KTU1V48aNNXXqVMdrYWFh6tOnjySpXbt22rVrVwXPEvAs4hUAAAAAAOWQk5Oju556Vrvj6skvILD0b4yI1jJboE6mp1/wkMjISEVFRUmSatWqpdtvv12rVq0qdlxgYKCGDx+uWbNmOZ4LDg52/NpqtRa75hbgbYhXAAAAAACUw5NvvKXd1WpfdLXVhfgFhynHZui771eX+PqRI0dkt9slSadPn9aCBQvUqlUrSdL+/fuVlZUlSbLb7frss8/UsmXLcp4FLsZm+Jnu4Yt886wBAAAAAKiAHbt26Zt9qWVbcfWn1EVztevNZ5WfeVqPP/KwGjZsKEm69957Hdeumjt3rlq0aKErrrhC11xzjW688UYNHz5ckrRlyxa1a9dOLVu2VMuWLXX8+HFNmjTJeScHmIzFMAzD05MAAAAAAMCbPPziK1qQ41+uVVfnMtJP6bWbrtMtN3V30szgDBkZGYqKitITa29ScHiAp6fjkJOZr5faLVF6eroiIyM9PR23YeUVAAAAAAClUFBQoLS0tLMXUt+zv8LhSpIsUVW0bMOmik8OLmHIIruJHoYsnv4t8Qh/T08AAAAAAAAzKigoUGZmpjIzM3X69GmdOXNG0tkLtR/PLXDa5xxKO+20sYDKiHgFAAAAAIAuHKvOl5aWptzAYKdtZTqdk+OkkYDKiXgFAAAAAPBJpY1V5/Pzc+4VeJyx/RCuYbY7/JlpLu5EvAIAAAAA+ITyxqrzVa1aVWF5Ocp20ryqhoU4aSSgciJeAQAAAAAqJWfFqvNZrVZVC/bXASeMZRiGakX5zl3jgPIgXgEAAAAAKgVXxaqSNKlWRfvy8+QXEFihcazHDmvwrcOdNCs4m92wyG6Y5w5/ZpqLOxGvAAAAAABeyZ2x6nwDut+o1dM/VHa9xAqN0zzYTy2aN3PSrIDKiXgFAAAAAPAKnoxV5wsPD1fPxvU05/gp+UVWKd8YRw/o2QdHOnlmQOVDvAIAAAAAmJKZYlVJ+vfort3vz9TP2UHyCwkt03v9Tx3Tfe2vUmLjRi6aHZzBJj/ZZJ47/JlpLu5EvAIAAAAAmILZY5Wfn5/Cw8MVHh6uiIgIhYWFafbEK/T3CS9p6anjskVXK9U44UcP6L72V2nE4NtdPGOgciBeAQAAAAA8whtjlcVS9ILZVqtVk5Ke0ryFizV1wRLtC46SpYRthIZhyHrsiJoHW5Q09j41bdLYXacBeD3iFQAAAADALSpDrLqQfr166K89b9L8JUu0bMOvOnQqXadz8+TnZ1FMaIhqRUdp8MChatmiuYvPAs7E3QbNgXgFAAAAAHCJyhyrSmKxWNSnRw/16dHDibMEQLwCAAAAADiFr8UqAO5BvAIAAAAAlAuxCpWdXX6ym+gOf2aaizsRrwAAAAAApUKsAuAJxCsAAAAAQImIVQDMgHgFAAAAAJBErALOZzMsspnoDn9mmos7Ea8AAAAAwEcRqwB4A+IVAAAAAPgIYhUAb0S8AgAAAIBKilgFVIzdsMhuoq16ZpqLOxGvAAAAAKCSIFYBqIyIVwAAAADgpYhVAHwB8QoAAAAAvASxCnAvw/CT3fDz9DQcDBPNxZ2IVwAAAABgUsQqACBeAQAAAIBpEKsAoDjiFQAAAAB4CLEKMDebLLLJPP/Mm2ku7kS8AgAAAAA3IVYBQNkRrwAAAADARYhVAFBxxCsAAAAAcBJiFVC52A3Jbpjn/yN2w9Mz8AziFQAAAACUE7EKgJm99NJLmjdvnrZt26aQkBBde+21euWVV9S4ceMLvmfFihXq0qVLsed///13NWnSxJXTvSDiFQAAAACUErEKgDdZuXKlRo8erauuukoFBQV68skn1a1bN23dulVhYWEXfe/27dsVGRnp+Lp69equnu4FEa8AAAAA4AKIVYBvsxt+sht+np6GQ1nnsmTJkiJfJycnKzY2Vj///LM6dux40ffGxsYqOjq6rFN0CeIVAAAAAPyJWAXAG2RkZBT5OigoSEFBQZd8X3p6uiQpJibmkse2atVKOTk5atq0qZ566qkStxK6C/EKAAAAgM8iVgHwRrVr1y7y9fjx45WUlHTR9xiGoYceekjt27dX8+bNL3hcQkKCpk2bpjZt2ig3N1ezZs1S165dtWLFikuu1nIV4hUAAAAAn0GsAlAWdllkl3n+P1g4lwMHDhS5HlVpVl2NGTNGv/76q1avXn3R4xo3blzkgu7t2rXTgQMH9PrrrxOvAAAAAKA0duzYoaFDh+r48eOKjo7WjBkz1LRp0xKPLSgo0PHjx9WxY0cFBgbqgw8+cLw2c+ZMLViwQIZhqE6dOho/frwiIiKKjZGUlKTExEQNGjTI6edCrAJQHpGRkUXi1aXcf//9mj9/vr7//nvVqlWrzJ93zTXXaPbs2WV+n7MQrwAAAAB4lfvuu09/+9vfNGzYMH3++ee65557tHbtWkklr6x68803lZiYqB07djjG+PHHH7Vw4UIlJycrLCxM06ZN0+TJk/X444+7dO7EKgDuZBiG7r//fn3xxRdasWKF6tWrV65xNm7cqISEBCfPrvSIVwAAAAC8xtGjR7VhwwZ98803kqQ+ffpo9OjRWrt2raKjo4ttA9y4caP279+vwYMHa+LEiY7nd+zYoVatWjluFd+hQweNHDnygvFqz549GjVqlFJSUtSgQQO9+OKLCggIuOR8iVWAd7MZFtkM8/x/tqxzGT16tD766CP95z//UUREhFJSUiRJUVFRCgkJkSQ98cQTOnTokGbOnClJeuutt1S3bl01a9ZMeXl5mj17tubOnau5c+c692TKgHgFAAAAwGvs2bNH8fHxSklJcaysqlatmrZs2aLWrVsXOTY7O1tvvPGG/vnPf2r//v1FXktMTNS8efN04sQJxcTEaNGiRcrKylJ6erqioqKKfe4ff/yhyZMnKyAgQCNGjNDSpUt10003FTuOWAXATKZMmSJJ6ty5c5Hnk5OTNWzYMEnSkSNHinyPzMvL0yOPPKJDhw4pJCREzZo108KFC9WzZ093TbsY4hUAAAAA0zp/G+COHTuUn5+v1NTUS7534sSJGjhwoGJjY4vFq7Zt22rw4MF68MEHZbVaHbeA9/cv+UekLl26KDg4WJLUrFkzHTx4UBKxCoC5GYZxyWNmzJhR5OvHHntMjz32mItmVD7EKwAAAACmcam7AcbFxSk1NVUFBQXy9/eXYRhKTU1VfHx8sbE2bdqkH374Qe+9957y8vKUkZGhW2+9VZ999pkkacCAARowYIAkafPmzYqLi3NsIzxfYGCgpLOxKiQkRKGhoWrcuDGxCqjk7Iaf7Iafp6fhYKa5uBPxCgAAAIDHXCpWnS8mJkaNGzfW4sWL1bt3by1dulQJCQmqUaNGsWM/+eQTx6/Xr1+viRMnatasWY7njh8/rmrVqiknJ0dTp07VkCFDio3h5+engIAARUVFOWJVlSpVHKutAACuR7wCAAAA4DZljVUlGTdunJ599lnHnQKTkpIcr02YMEEdO3ZUp06dLjnO6NGjZRiG8vPz1bNnTw0aNKjEbYCRkZGKiooiVgGAh1iM0myABAAAAIBycEasciWuWQWgJBkZGYqKitKtS4coMCzQ09NxyMvK02ddZyk9PV2RkZGeno7bsPIKAAAAgNMQqwAAzka8AgAAAFBuxCoAgKsRrwAAAACUGrEKgC8xZJFd5vkeYphoLu5EvAIAAABwQcQqAICnEa8AAAAAOBCrAABmQ7wCAAAAfBixCgAuzG5YZDfM8z3HTHNxJ+IVAAAA4EOIVQAAb0O8AgAAACoxYhUAwNsRrwAAAIBKhFgFAM5jN/xkN/w8PQ0HM83FnYhXAAAAgBcjVgEAKjviFQAAAOBFiFUAAF9DvAIAAABMjFgFAJ7D3QbNgXgFAAAAmAixCgCAoohXAAAAgAcRqwAAuDjiFQAAAOBGxCoA8B52WWSXeb4Hmmku7kS8AgAAAFyIWAUAQMUQrwAAAAAnIlYBAOBcxCsAAACgAohVAFB5cbdBcyBeAQAAAGVArAIAwL2IVwAAAMBFEKsAAPAs4hUAAABwDmIVAKAQ2wbNgXgFAAAAn0asAgDA3IhXAAAA8CnEKgAAvIufpycAAHCeHTt26Nprr1WjRo109dVXa+vWrcWOMQxDjz76qJo1a6aWLVuqS5cu2rlzp+P1BQsWqEmTJmrYsKH69++vzMxMSdLevXtVrVo1t50LAEjSAw88oLp168pisWjLli0XPG769Om6/PLL1aBBA/3tb39TQUGB47WCggKdOnVK7du3V5UqVfTLL79o165d2rhxo9q1a+eO07goPz8/RUZGqkaNGmrcuLGuvPJKXX755UpISFB4eDjhCgA8qHDboJkevoiVVwDgBWw2mw4dOqSVK3/Qb5v/UEGBTSGhQbqufVtddVVbRUdHy2q16r777tPf/vY3DRs2TJ9//rnuuecerV27tshY8+fP1/fff69NmzYpICBAzz//vMaNG6fPPvtMmZmZuueee7Ry5Uo1adJEY8aM0QsvvKCXXnrJQ2cOoLI7duyYlq1Yrd17DkoWi6pVjVLXztepXr16slgsGjBggB577DG1b9/+gmPs2bNHTz/9tDZu3KjY2FjdcsstevvttzVw4EDHyqpPPvlEVatWlWEYbjy7krGyCgCAsiFeAYCJZWdna8nibzXns290cG+mjPyqCgqMlsVild1eoGWLFyg47GM1bFRVQ4b104YNG/TNN99Ikvr3768xY8Zo7969qlu3bpFxc3NzlZOTI39/f2VkZKhWrVqSpMWLF6tt27Zq0qSJJGnUqFHq2bNnkXj1zDPPaOHChUpPT9ekSZPUs2dP9/xmAKg0DMPQp5//Rwu/+VE7D2TK7l9dAUFhkiRbQYbe+3SSala1qP1fmuj+UXcrICDgouN99tln6tmzp/Lz87Vt2zbdcMMNmjlzpjp27ChJ2r9/v7755hslJSVp5cqVxd4/depUrV69WpmZmXrkkUcuGsrKg1gFAEDFEK8AwISys7N14MABvf7qVG3fkqNAvxoK8pMU9L9j/PysCg2KkwritOs3u/4+5mUFBQU7VhVYLBZddtll2r9/f5F41bt3b61YsULx8fGKiIhQzZo1HT/M7d+/X3Xq1HEcW7duXR06dEh2u12SdOLECbVp00bPPfeclixZorFjxxKvAJRJaupRPf70a9p+OEjWoGqyhlWT9ZzXrf6BsobX0tFc6bOlx/T9jw9r3N+HFRnj/GtWbdiwQXFxcUpNTZUk1ahRw/Fru92u559/Xo8//rj8/Yv/1Tc9PV1NmjTRyJEjtWbNGr3++usVjlfEKgCoPMy2Vc9Mc3En4hUAmEh2draOHDmiY8eO6eUX31XakRoK9I+55PssFj/52Wsp8/QaPf3kS3r+xXHy9/cvcXvMhg0btG3bNh06dEiRkZH6xz/+oTFjxmjGjBl/jnXhfyGGhYWpT58+kqR27dpp165d5TtRAD5p//4DGvn3l5Ru1JU16NKXXvUPCNbxvMv0+AuzdOZMtlJSUmS1Wku8wPq537vO/d43a9YstW7dWo0bN9bhw4eLvS8kJESdO3eWJLVs2VKHDh0q83kRqwAAcC3iFQCYQGG0OnXqlCRp8juzlZZSU/7+QZd45/8EB0UpNy9La1Yc1ztvT9MDY0fqwIEDuuyyy4ocN2PGDHXp0kXR0dGSpKFDhzpWT1122WVatmyZ49i9e/eqZs2a8vM7+0NmcHCw4zWr1SqbzVau8wXge/Lz8zX28VeVbtQrc9jJ96+pjNNntG3bdlWpUqXY6/Hx8Tpy5Ijj6yNHjiguLk6StHHjRu3YsUMLFy6UzWbT6dOn1bt3b3344YeSpMDAQMf7/Pz8SvV9jVgFAIB7Ea8AwIPOj1aStGbNOu39w6JAa+nDlSQFBoQrIixBJ04e1Py5GbL621S3bt1i17uqX7++vv76a/39739XQECAvvrqKzVv3lySdNNNN2n06NHatm2bmjRposmTJ+u2226r8HkCwAsvv60jWXHyDyhn5PEL0Jwvl+qaa/5SLBRdf/31uvfee3XvvfcqJiZGc+fOVbdu3SRJb731luO4w4cPa8iQIfrqq68kyXE31Ut+NLEKAHyWIcku83zP9/xtRzyDeAUAHlBStCq09JsNCrReVsK7Li2x/i3auvML7TmUpS1/LNG0aVO1ZcsWjR8/Xp07d1aXLl3UuXNnrVmzRo0aNVJAQICqV6+uZ555xnEL+qefflo9evSQzWbT5ZdfrhdeeEFbtmzRoUOHZLPZHMcVbtu52K3r4Xn79u3Tk08+qbS0NEVEROj5559XgwYNih33008/aeLEicrKypKfn5+6dOmi+++/XxaLRYcOHVKvXr3UsGFDx/FvvvmmateuXWycJ598Us2aNdMdd9zh0vOCdzlz5oy++2G7/MMuL/N7d22ap5OHtyov97TWrPpGPXuu1uLFizVhwgR17NhRnTp1Uq1atXTffffpnnvukWEYatu2rfr27Vvu+RKrAAAwF4thhvsFA4CPuFi0kqTdu/dq4ivfKSSwZoU/yxK0Sy++NpofuHzcyJEj1atXL/Xu3VvfffedPvzwQyUnJxc7btu2bQoPD1etWrWUm5urUaNGaeDAgbrpppscq1WWLl16yc9LSkpSYmKiBg0a5IrTgZf6ZM58rf49SFb/wEsffAm1wvfr0QeGOmFW/0OsAgCcLyMjQ1FRUbph0X3yDyvbjghXKsjK1Xc931V6eroiIyM9PR23YeUVALjBpaJVoR/XbFBQQLxTPjMrI1CpqamKj3fOePA+J0+e1LZt2/TOO+9Ikrp27arXXntNhw8fVo0aNYoc26RJE8evg4KC1KhRIx08eLBcn7tnzx6NGjVKKSkpatCggV588UUFBASU/0Tg9Q6mpMvqX8spYx07lVvhMYhVAIDS4m6D5kC8AgAXKm20KnTyxBn5WUKc8tmB1ura+PMW9ehFvPJVqampql69uvz9z/7r3mKxKC4uTikpKcXi1bmOHz+uZcuWaeLEiY7nsrKydNddd8lms6lz5866++67ZbVaS3z/H3/8ocmTJysgIEAjRozQ0qVLddNNNzn35OBVTqbnSpe+uWCpnD5z9lpV4eHhpX4PsQoAAO9GvAIAFyhrtCpUUOC8ndxWa5AyMkp3MWJUXmX9AT0zM1MPPfSQhgwZ4liNVa1aNS1atEgxMTFKT0/XE088odmzZ2vo0JK3bnXp0sVxZ8pmzZqVewUXKg+bze60eGW3BCg7O/uS8SogIEBhYWGKiYlRdHQ0sQoAAC9GvAIAJypvtCpk9XfeD1d2e75Cw5yzigveKS4uTqmpqSooKJC/v78Mw7joVtKsrCw98MAD6tixo+68807H84GBgYqJiZEkRUVF6ZZbbtHXX399wXgVGPi/6xpZrVbZbDYnnhW8kdXqpHIlyc8ocMTRi8nPz1daWprS0tIUFBSkiIgIx8qrc/8ZBQDgYtg2aA7EKwBwgopGq0LRVUJ00LDLYqn4D3o5+cd0xZXdKzwOvFdMTIwaN26sxYsXq3fv3lq6dKkSEhJK3DJ45swZ3X///brmmmt07733Fnnt5MmTioyMlL+/v/Ly8rR8+XI1btzYXaeBSiA6IlBZWc4ZKzzYroiIiDK9Jzc3V7m5uTp+/LgkEbMAAPAyxCsAqABnRatCbdo20/rVPyokKK7CY4WE56h2bedcIBnea9y4cXr22WeVnJyssLAwJSUlOV6bMGGCOnbsqE6dOunjjz/Wb7/9ppycHK1YsULS2Qu833PPPdq0aZOmTp3qWEXVtm1b3X333Z45IXiluKphOnC6QH5+Ff+rZ9Xoit/xiZgFAIB3sRiG4bwLrACAj3B2tDpX0pNTlJNRt0JjGIZddZuc1P+NGeKcSQFABZw6dUpPv/q5rBENKzROfvYp3XpjvDp3vNZJMysZMQsAkJGRoaioKHX8apT8wyr+H06cpSArV9/3nqz09HRFRkZ6ejpuw8orACgDV0arQtd2TNSSLw8p0D+m3GMUWPZpwKBbFRRknn/RAvBd8fHxalI3VNuPFsjPWv6/fkYHpKhj+77Om9gFsDILAABzIV4BQCm4I1oV6ta9szasn6qTh6Pk52ct8/vzCtLU+abL1a3bjfLzc95FkgGgIt55c4IGDn1cGUbdcr3flrVHQ4d65vsaMQsAfBcXbDcHfqoBgIvIzs7W7t27tXXrVreEq0IP/P0uBUbslN1etru05dsydHlzm8Y9+XfCFQBTCQsL0wtP/U0htn1lfq8lL0VD+12la/5ytfz9Pf/fXgtD1t69e7V582Zt2bJF+/bt04kTJ5SXl+fp6QEAUOlwzSsAKIE7V1pdyJkzZ/SvSbN1ZF+oAv2rXvL4fPsB/aVDgsY/+5hCQ0PdMEMAKLutW7fpmRem6NDpqrIGXPx7lWG3KcLvoEYNv1m33Hz27qmGYSgnJ0enT59WZmamTp8+rYKCAndMvdRYmQUA3q/wmlft54823TWvVt/yL5+75hXxCgDOYYZodb4Vy37QqpVbdPyInwID4mT1C3C8ll+QLbslRTXrBOuev/XX9dd3ZsUVANOz2Wx665339P3a33UkLUgBoVVlsZz93mUYhvKy01UlOF2tmtXQuEdHKSoq6oJjEbMAAK5QGK+u+88Y08WrH/q8Q7wCAF9kxmh1vgMHDmrdT5t0/Nhp2exSQICfLrusum7qeYMSExMVHBzs6SkCQJkYhqH/rluv71ev08m0LBmGFBYaqLatmun6Lh3KddMJYhYAwBmIV+ZCvALg07whWl1ITEyMEhISiFYAcBHELABAeRCvzMXzV7wEAA8gWgGAb7BYLAoJCVFISIhiY2NNGbO4myEAmJddFtllnjv8mWku7kS8AuBTiFYA4NuIWQAAeB/iFQCfQLQCAJSEmAUAgPkRrwBUakQrAEBZELMAAOeyGxbZDfNs1TPTXNyJeAWgUiJaAQCcgZgFAIDnEa8AVCpEKwCAKxGzAABwP+IVgEqBaAUA8ARiFgBUboZhkWGirXpmmos7Ea8AeDWiFQDATIhZAAA4H/EKgFciWgEAvAExCwCAiiNeAfAqRCsAgDcjZgGAd+Fug+ZAvALgFYhWAIDKiJgFAMClEa8AmBrRCgDgS4hZAAAUR7wCYEpEKwAAiFkA4GncbdAciFcATIVoBQDAhRGzAAC+iHgFwBSIVgAAlB0xCwDgC4hXADyKaAUAgPMQswDAuQyT3W2QbYMA4EZEKwAAXI+YBQCoDIhXANyKaAUAgOcQswAA3oh4BcAtiFYAAJgPMQsALs6QZBiensX/mGgqbkW8AuBSRCsAALwHMQsAYEbEKwAuQbQCAMD7EbMAAGZAvALgVEQrAAAqL2IWAF9jl0UWmecOf3YTzcWdiFcAnIJoBQCA7yFmAQDcgXgFoEKIVgAAoJC7Ytb+/fuVlJSktLQ0hYeHKykpSfXr17/g8bm5ubrzzjsVHBysWbNmOWLWzJkztWjRIklSo0aNlJycrNjY2GLvHzZsmNq2basxY8ZUeO4AgLIjXgEoF6IVAAC4FFfFrBdffFF//etf1bt3b3333XeaMGGCkpOTL3j85MmT1aJFC+3YscPx3I8//qiFCxfq/fffV1hYmKZNm6YxY8bomWeeYWUWAAfDsMgwzLNVz0xzcSc/T08AgHfJzs7W7t27tXXrVq8LVzExMWrWrJnq1atHuAIAwAMKY1ZsbKzq16+vli1bqmnTpqpdu7aqVKkif/9L/7f1kydPatu2berRo4ckqWvXrjp8+LAOHz5c4vEbN27U/v371bNnzyLP79ixQ61atVJYWJgkqUOHDlq0aJFjVdbevXu1efNmbdmyRZmZmdqwYYOuv/56NWrUSP369VNeXl4FfzcAAKXFyisApcJKKwAA4GzlWZmVmpqq6tWrO0KXxWJRXFycUlJSVKNGjSLHZmdn64033tA///lP7d+/v8hriYmJmjdvnk6cOKGYmBgtWrRIWVlZSk9PV1RUlOO4wmtm/fzzz5o8ebLCw8N1zz33aMaMGRo2bBgrswDADYhXAC6KaAUAANylNDGr8LjSmDhxogYOHKjY2Nhi8apt27YaPHiwHnzwQVmtVnXp0kWSLrj6q0uXLgoODlZBQYEaNWqkjRs3qk2bNlwAHqjk7IZFFhNt1bObaC7uRLwCUCKiFQAA8LSSYlZ0dLSOHTumiIgIZWdnKz8/X6mpqYqPjy/2/k2bNumHH37Qe++9p7y8PGVkZOjWW2/VZ599JkkaMGCABgwYIEnavHmz4uLiHNsIz3dulLJarbLZbJK4myEAuAPxCkARRCsAAGBWFotFderUUevWrbVmzRoNHTpUH3/8serUqaNmzZoV22b4ySefOH69fv16TZw4UbNmzXI8d/z4cVWrVk05OTmaOnWqhgwZUuE5ErMAwPmIVwAkEa0AAID3ePfddzVs2DC9+OKLioyM1MyZM1W/fn0ZhqHhw4fr+uuvV/v27S95N8PRo0fLMAzl5+erZ8+eGjRokNPnSswCvJthnH2YhZnm4k4Ww/DVUwcgEa0AAEDlVZoLwHsaMQswp4yMDEVFRanZp4/KGhrk6ek42M7k6rdBryk9PV2RkZGeno7bsPIK8FFEKwAAUNmV526G7sbKLAC4NOIV4GOIVgAAwFcRswCUlWFYZJjoDn9mmos7Ea8AH0G0AgAAKIqYBQDegXgFVHJEKwAAgNIhZgGAORGvgEqKaAUAAFAxxCwAbBs0B+IVUMkQrQAAAFyDmAUAnkG8AioJohUAAIB7EbMAwD2IV4CXI1oBAACYAzELqHzshkUWE23Vs5toLu5EvAK8FNEKAADA3IhZAOAcxCvAyxCtAAAAvBMxCwDKh3gFeAmiFQAAQOVCzALMzzDOPszCTHNxJ+IVYHJEKwAAAN9AzAKAkhGvAJMiWgEAAPg2YhYAnEW8AkyGaAUAAICSELMA9zu7bdA8d/hj2yAAjyJaAQAAoCyIWQB8BfEK8DCiFQAAAJyBmAWgsiJeAR5CtAIAAIArEbOAijMMi8m2DZpnLu5EvALcjGgFAAAATyBmAfBWxCvATYhWAAAAMBNiFgBvQbwCXIxoBQAAAG9AzAKKM/58mIWZ5uJOxCvARYhWAAAA8GYXi1mFQYuYBcAdiFeAkxGtAAAAUBkRswB4CvEKcBKiFQAAAHwJMQu+gLsNmgPxCqggohUAAABAzCqLBx54QPPnz9e+ffu0efNmNW/evNgxK1asUM+ePdWoUSPHc2vXrlVISIj27NmjAQMGyGazyWazqUmTJpo2bZqqVKmivXv3qm3bto5zBCoD4hVQTkQrAAAA4MJ8NWZt+W2r5nz9jQ6lnVZmbp4kqWpYiOpVr6q7Bw1UTEyMBgwYoMcee0zt27e/6FhNmzbV+vXriz1fo0YNrV69WiEhIZKkBx98UBMmTNA///nPMs8X8AbEK6CMiFYAAABA2VX2mPXfnzfo9Q8/1W/ZNhVUryGLJVwq/Gu3TTIOZejjfzyntnHRevHB+1W1atVyzzMoKMjxa5vNpszMTEVHRxc55plnntHChQuVnp6uSZMmqWfPnuX+PJ/G7QZNgXgFlBLRCgAAAHCeyhKzDMPQi/+aos9/36PsajWkCKmkqxJZrP7KSqijFXa7+ox7To/3733Jz9++fbtat24tq9Wq4cOHa9SoUY7X8vLydPXVV2vfvn264oorNH/+fMdrJ06cUJs2bfTcc89pyZIlGjt2LPEKXo14BVwC0QoAAABwPW+NWe9+MkffnpFUrUapxrD4+el4fF098+XXOpOdfcHjWrdurYMHDyoqKkoHDx5Uz549Va1aNd16662SpMDAQG3atEl5eXm6//77NXXqVD322GOSpLCwMPXp00eS1K5dO+3atasCZw14HvEKuACiFQAAAOA53hCzFi1drm/ScmWpGlfm92ZXr6H0M9k6euxYia9HRkY6fl2rVi3dfvvtWrVqlSNeFQoMDNTw4cM1YsQIR7w69+cAq9Uqm81W5vnhTya726DMNBc3Il4B5yFaAQAAAOZjtpiVm5urz9f/Ikv9ZuUew27111szP9L1XboUe+3IkSOKi4uTn5+fTp8+rQULFuiee+6RJO3fv19Vq1ZVWFiY7Ha7PvvsM7Vs2bLc8wDMjngF/Gnz5s0aOnSoTpw4ofDwcCUlJal+/frFjjMMQ5MmTdIPP/wgPz8/RUVF6amnnlLt2rUlSatWrdJbb70lm82myy+/XM8++6xCQ0OLjZOUlKTExEQNGjSownMnWgEAAMDXeDpm/efbpTpVo76s5Xhv6qK5yty+RQWZp7X4049Ud/m32rt3r+69917dcsstuuWWWzR37lxNmTJF/v7+Kigo0MCBAzV8+HBJ0pYtW/SPf/xDkmS329W6dWtNmjTJiWcHmIvFMAwfvVY9cFbhSqtBgwapV69e6t27t7777jt9+OGHSk5OLnb8ihUrlJycrOnTp8vf31/vvfeedu7cqZdffllnzpxR3759NW3aNNWtW1evvPKKwsLCNGbMmGLjOCNeEa0AAACAkrk6Zj35brL2JjSo8DiGYdetUVZNePjBik8KTpORkaGoqCjVS35SfqHm+XnLfiZHe4a/oPT09CJbSys7P09PAPCU7Oxs7d69W1u3btWuXbu0bds29ejRQ5LUtWtXHT58WIcPHy7xvfn5+crNzZVhGMrKylJsbKwkac2aNUpMTFTdunUlSQMHDtTXX399wTns2bNHo0aNUr9+/fToo48qPz+/VHOPiYlRs2bNVK9ePcIVAAAAUILClVmxsbFq0KCBWrZsqaZNm6p27dqKjo6Wv3/5NyLZ7XYdy8lz0jz9dOBUulPGAiortg3C55R0TavU1FRVr17d8S8wi8WiuLg4paSkqEaNoncN6dixo37++Wd1795dYWFhql69uqZNmyZJSklJUUJCguPYGjVq6OjRo7Lb7fLzK96K//jjD02ePFkBAQEaMWKEli5dqptuuumCc2elFQAAAFA+ztxmePLkSWUGBMlZl84+ejrLSSMBlRPxCj7jUhdit1hK96+ebdu2ad++fVq8eLHCwsL09ttv69VXX1VSUlKZxpGkLl26OEJUs2bNdPDgwRKPI1oBAAAAzlWRmJWfny+7xVqu612VxG7YnTQSnM0w2d0GzTQXdyJeodIrzd0D4+LilJqaqoKCAvn7+8swDKWmpio+Pr7YsV999ZXatGmjiIgISdLNN9+ssWPHSpLi4+O1bt06x7GHDx9WbGxsiauupLO3tS1U0i1siVYAAACAe5QlZkVFRSkoP1fOuoJW6Dk/FwAojmteodI695pWFwtX0tlI1LhxYy1evFiStHTpUiUkJBTbMihJNWvW1Lp16xz/4lq1apUaNDh7ocZ27dpp69at2rt3ryRpzpw56tatW5nnzjWtAAAAAM+62DWzatSooRh/562AqRnlOxfeBsqDlVeodEqz0qok48aN07PPPqvk5GSFhYU5tgFK0oQJE9SxY0d16tRJt956q/bu3atBgwYpICBA1apV07hx4yRJYWFheuqpp/Twww/LZrOpYcOGRca5lJCQEDVr1oxgBQAAAJjM+SuzWtauoW/tRpkuG1ISW2aG/tKuhZNmCaczLGcfZmGmubiRxTAMw9OTAJyhvNHKDNgeCAAAAHiXTb9u1h1TPpA9tmaFxklI2aPvJr8pq9VZV9CCM2RkZCgqKkp1pz8tv1Dz/JxmP5OjvfdMUHp6uiIjfWfFHiuv4PWIVgAAAADc7cqWLXRtdLBW2WyylDc8nU7T4E7tCFfAJRCv4LWIVgAAAAA86Y1/PKq+jzypIzUalPm99vw8tfPL1T233+aCmcFZDOPswyzMNBd34oLt8DpluRC72XAhdgAAAKDyiIqK0pRHxyruyC4Zdnup32fPzdaVmUc17YVnK3zNLOBiXnrpJV111VWKiIhQbGys+vbtq+3bt1/yfStXrlSbNm0UHBys+vXra+rUqW6Y7YURr+A1iFYAAAAAzKZJo8s176Vn1S73hHTy6EWPNQy7glP2a3BcmD765ysKCgpy0yzhq1auXKnRo0frxx9/1LfffquCggJ169ZNWVlZF3zPnj171LNnT3Xo0EEbN27UuHHj9MADD2ju3LlunHlRXLAdpsf2QAAAAADe4LuVK/XR10u1/XiajvsFqCAoVIZhKDT7tOL8LbqiZpxG3TFIDevX9/RUcQmFF2yv82/zXbB934jyX7D92LFjio2N1cqVK9WxY8cSj3n88cc1f/58/f77747nRo4cqV9++UVr164t99wrgmtewbSIVgAAAAC8yQ2dOumGTp1kGIZ2796t3fsPKNDfX02bNFb16tU9PT1UIhkZGUW+DgoKKtVKvvT0dElnf2a9kLVr16pbt25FnuvevbumT5+u/Px8BQQElGPGFUO8gukQrQAAAAB4M4vFogYNGqhBg7JfyB0ojdq1axf5evz48UpKSrroewzD0EMPPaT27durefPmFzwuJSVFcXFxRZ6Li4tTQUGBjh8/roSEhHLPu7yIVzANohUAAAAAwEwMwyLDMM9F9QvncuDAgSLbBkuz6mrMmDH69ddftXr16ksee/6NBAqvOOWpGwwQr+BxRCsAAAAAAEovMjKyTNe8uv/++zV//nx9//33qlWr1kWPjY+PV0pKSpHnjh49Kn9/f1WtWrVc860o4hU8hmgFAAAAAIDrGIah+++/X1988YVWrFihevXqXfI97dq101dffVXkuW+++UZt27b1yPWuJOIVPIBoBQAAAADwGoanJ1B+o0eP1kcffaT//Oc/ioiIcKyoioqKUkhIiCTpiSee0KFDhzRz5kxJZ+8s+M477+ihhx7SiBEjtHbtWk2fPl0ff/yxx86DeAW3IVoBAAAAAOA+U6ZMkSR17ty5yPPJyckaNmyYJOnIkSPav3+/47V69epp0aJF+vvf/65//etfqlGjhiZNmqT+/fu7a9rFEK/gckQrAAAAAADcr/BC6xczY8aMYs916tRJGzZscMGMyod4BZchWgEAAAAAvJlZ7zboa4hXcDqiFQAAAAAAcBbiFZyGaAUAAAAAAJyNeIUKI1oBAAAAAColQ+a626CZ5uJGxCuUG9EKAAAAAAC4GvEKZUa0AgAAAAAA7kK8QqkRrQAAAAAAvsXy58MszDQX9yFe4ZKIVgAAAAAAwFOIV7ggohUAAAAAAPA04hWKIVoBAAAAACDuNmgSxCs4EK0AAAAAAIDZEK9AtAIAAAAAAOUyf/78Mr/nxhtvVEhISKmPJ175MKIVAAAAAAAXwbbBS+rbt2+ZjrdYLNqxY4fq169f6vcQr3wQ0QoAAAAAADhLSkqKYmNjS3VsREREmccnXvkQohUAAAAAAHCmoUOHlmkL4J133qnIyMgyfQbxygcQrQAAAAAAKAfDcvZhFmaay5+Sk5PLdPyUKVPK/BnEq0qMaAUAAAAAALwd8aoSIloBAAAAAAB3y8rK0ssvv6ylS5fq6NGjstvtRV7fvXt3ucYlXlUiRCsAAAAAAJzHMM4+zMJMcynJvffeq5UrV2rIkCFKSEiQxeKcbY7Eq0qAaAUAAAAAADxt8eLFWrhwoa677jqnjku88mJEKwAAAAAAYBZVqlRRTEyM08clXnkhohUAAAAAAG5g/PkwCzPNpQQTJkzQM888ow8++EChoaFOG5d45UWIVgAAAAAAwExatWpV5NpWO3fuVFxcnOrWrauAgIAix27YsKFcn0G88gJEKwAAAAAAYEZ9+/Z1+WcQr0yMaAUAAAAAgAcZlrMPszDTXP40fvx4l38G8cqEiFYAAAAAAABnEa9MhGgFAAAAAAC8SUxMjP744w9Vq1atVMdfdtllWrVqlerUqVPqzyBemQDRCgAAAAAA87EYZx9mYaa5FEpLS9PixYsVFRVVquNPnDghm81Wps8gXnkQ0QoAAAAAAHi7oUOHunR84pUHEK0AAAAAAEBlYLfbXf4ZxCs3IloBAAAAAOBFjD8fZmGmubgR8coNiFYAAAAAAADlQ7xyIaIVAAAAAABAxRCvXIBoBQAAAABAJWBYzj7MwkxzcSPilRMRrQAAAAAAAJyLeOUERCsAAAAAAABp165dSk5O1q5duzRx4kTFxsZqyZIlql27tpo1a1auMf2cPEefkp2drd27d2vr1q1eF65iYmLUrFkz1atXj3AFAAAAAEBJDBM+TGzlypVq0aKFfvrpJ82bN0+ZmZmSpF9//VXjx48v97jEq3IgWgEAAAAAABT1j3/8Q88//7y+/fZbBQYGOp7v0qWL1q5dW+5x2TZYBmwPBAAAAAAAKNnmzZv10UcfFXu+evXqOnHiRLnHJV6VAtEKAAAAAAAfZLatemaaSwmio6N15MgR1atXr8jzGzduVM2aNcs9LvHqIohWAAAAAAAApXPHHXfo8ccf15w5c2SxWGS32/XDDz/okUce0V133VXucYlXJSBaAQAAAAAAlM0LL7ygYcOGqWbNmjIMQ02bNpXNZtMdd9yhp556qtzjEq/OQbQCAAAAAAAObBssk4CAAH344Yd67rnntHHjRtntdrVq1UqXX355hcYlXoloBQAAAAAA4CwNGjRQgwYNnDaeT8crohUAAAAAAIBzGIahzz//XMuXL9fRo0dlt9uLvD5v3rxyjeuT8YpoBQAAAAAALsmwnH2YhZnmUoKxY8dq2rRp6tKli+Li4mSxOGe+PhWviFYAAAAAAACuMXv2bM2bN089e/Z06rg+Ea+IVgAAAAAAAK4VFRWl+vXrO31cP6ePaCLZ2dnavXu3tm7dWmK42r9/v+6++27169dPd911l3bv3l3iOF9++aX++te/qk+fPnrhhRdUUFDgeG3VqlXq37+/+vbtq0cffVRnzpyRJB0+fFhdu3Yt99xjYmLUrFkz1atXj3AFAAAAAIAHWAzzPcwsKSlJzz77rLKzs506bqWMV2fOnNGOHTv066+/6uDBg8rLyyvxuBdffFF//etfNW/ePN11112aMGFCsWMOHTqkqVOn6r333tOXX36p48eP6z//+Y/jcyZMmKA33nhDX375papVq6b333+/QnMnWgEAAAAAAG80cOBAnTp1SrGxsWrRooVat25d5FFelWrbYFZWlr5e/I2++mihju05pfTU07LnGrJYpYjYMFWpFaVrb7pa17T/i06dOqVt27bpnXfekSR17dpVr732mg4fPqwaNWo4xly6dKm6dOmiqlWrSpL69++vmTNnqn///lqzZo0SExNVt25dSWf/kMaOHasxY8Y43j916lStXr1amZmZeuSRR9S+ffsS5872QAAAAAAA4M2GDRumn3/+WXfeeScXbD+f3W7Xxo0b9eoT/9ThtScUlBkui8VPwYqSYRhK10kFH/PXsa1n9NmyRVpyxXe6tu9Vql69uvz9z/4WWCwWxcXFKSUlpUi8SklJUXx8vOPrGjVqKDU11fFaQkJCkdfOvRVkenq6mjRpopEjR2rNmjV6/fXXi8UrohUAAAAAACZl/PkwCzPNpQQLFy7U119/fcGFO+Xl9fHKbrdr7mfzNPnJ6bLuDlOwJUI6J+yl64TWa4XaqrOiVU1BBaHK/Vn6fOcCZQVkleozzi2FhmFc8LXzhYSEqHPnzpKkli1b6tChQ47XiFYAAAAAAKAyqV27tiIjI50+rtdf82rZ0mWa/I/35b8nvMSQdFSHivxvoYi0qjpx7KSWf71C0tkolZqaWmSVlSTFx8fryJEjjq+PHDmiuLg4x2uHDx92vHb48GHFxsbKz+/sb2tgYKDjNT8/P9lsNq5pBQAAAAAAKqU33nhDjz32mPbu3evUcb06XqWmpmrSM5Nl3Rda4uuGYehUYKoaNWqkU4GpRVZNBVqCFaFovf/mB0pPT9fSpUuVkJBQZMugJF1//fVavny5Tpw4IcMwNHfuXHXr1k2S1K5dO23dutXxhzJnzhzHa+erUqWKJBGtAAAAAABApXTnnXdq+fLlatCggSIiIhQTE1PkUV5evW3w3++8p4x1BQqwBJX4eoZO6XRehhZNX6gOHTrotE4pUv/7zUpUG/12fJ3+estfVfOymkpKSpIkTZgwQR07dlSnTp1Uq1Yt3XfffbrnnntkGIbatm2rvn37SpLCwsL01FNP6eGHH5bNZlPDhg0dYxQq3B5YUFDgit8CAAAAAAAAU3jrrbdcMq7FOP8iTl4iLS1Nw24aoaz/XviYHcZmxVwRqg2bNqjVFa2U9mu2GlpaFDsuv1amXvj4KaeuiOKaVgAAAAAAeKeMjAxFRUXpsleel1+IeX6ut2fnaP/jTyk9Pd0l15YyK69debVz504d/yNdIYrSbmOrsq2ZxY45ZTmmUXckSZJuu+M2JW19VrlGdrHjAg8E6/ulq9Wt1w0VnhfRCgAAAACAysEiyWKiJT8XvmWc52RkZDhCWkZGxkWPLW9w89p4teb7tfI7FSRZJLufTUds+xUREaHbb79dVqtVkhQQEKBhw4ZJkoYPH67Dhw8rPz9fklRQUKBPPvlEp0+fVl2/xtq//YDUq/zzIVoBAAAAAABfU6VKFR05ckSxsbGKjo4u8WZ6hmHIYrHIZrOV6zO8Nl4d3HNIQZazoaih0UIRqqI/sjdpy69b9Mlnn6h27dpFjo+NjdXEiRMlSfv379dtt96mvOx8tdA1ijNqKTsjp1zzqFKlimrUqEG0AgAAAAAAPmfZsmWOi7EvX77cJZ/htfFKlv+VO0mKs9RSZEEVbft5g5o3ba4ZM2for3/9a7G3ffHFFxp21zAF5IboqoLrFWw5e6dCi1/5Ft/l5eUpLy9PQUFBJdZFAAAAAADgpQzL2YdZmGkuf+rUqZPj1/Xq1VPt2rWL9RHDMHTgwIFyf4Zfud/pYQ0TGyjXUvT6VSGWMF2Rf52iMmPVr18/nTx5ssjrJ0+eVL9+/RSVGasr8q9zhCtJCo0KKdc8srKytGPHDm3fvl0ZGRny0uvfAwAAAAAAVEi9evV07NixYs+fPHlS9erVK/e4XhuvrrnuL1K1/GLP+1n8FKggNazf0LFsrVCVKlXUoF4DBSpIfpb/nXqusnV5y/oVmg8RCwAAAAAA+LJzd8idKzMzs0KXW/LabYP16tVTXGJVpa8qKPbaqaCjGnXHfTIMQ1OnTtX4Z8br2eee1ciRI3XbHbdpyuvTVC8v0XF8QH1D7Tq0c8q8CiNWWFiYatSooYiICLYTAgAAAADgjYw/H2Zhprmc46GHHpIkWSwWPf300woN/d9ON5vNpp9++klXXnllucf32ngVERGhDr2v1bwfv1Zg/v+2/J0xMnUy95i6dOmiW27poyWLlyjOVlsPjHlASxYv0QNjH9ALL7ygM8pUqCVcNsOmxu3qyd/fub8VRCwAAAAAAOALNm7cKOnsyqvNmzcrMDDQ8VpgYKCuuOIKPfLII+Ue32vjlSQNvXeIVi3+QWnLChxh6KgOKcA/QINvH6yctDy1tXVWuCVKte0NtPLr1frvT/+Vv9Vfx2yHVEeN5d80T3eOvN1lcyRiAQAAAACAyqzwLoPDhw/XxIkTFRkZ6dTxvfaaV5IUHR2tca89JjU547jG1KnAVOUX5CvgeJha5XVUuCVKkhRuiVLrvI4KOB6mAluBTgamKj8uS7c/OKBC+y5Li2tiAQAAAADgZQwTPkwsOTnZ6eFK8vJ4JUmtW7fWM+/+Q9aWOSow8hWSF66WaqfGRitZLUUXllkt/mpstFILXaOgoCDd/lRftWzdwq3zJWIBAAAAAACUnldvGyzUsWNH1ZlfRy+Oe0W2ZTnyTwkt8TjDMJQblakmV9XXiMcmKCamiptn+j9sJwQAAAAAALi0ShGvJKlOnTp6Z8ZEbdq0SR+994lSdh7TqZQM5efky+pvVWRsuKrWjlbPW+9Srdo1PT1dByIWAAAAAADmZDHOPszCTHNxp0oTryQpICBAV111lVq1aqUjR47o2LFjXrMtj4gFAAAAAABQXKWKV4X8/f1Vu3ZtJSQkKDU1VUePHpXdbvf0tEqFiAUAAAAAALzF/PnzS33sLbfcUq7PqJTxqpC/v79q1qypuLg4IhYAAAAAACgbs93hz0xz+VPfvn1LdZzFYpHNZivXZ1TqeFWIiAUAAAAAAOB87ugrfi7/BBMpjFgtWrRQfHy8/Py85/QLI9b27duVkZHhNdfyAgAAAAAAvicnJ8dpY3lPvXEiIhYAAAAAALgkw4QPE7PZbJowYYJq1qyp8PBw7d69W5L09NNPa/r06eUe13uqjQsQsQAAAAAAAJzjhRde0IwZM/Tqq68qMDDQ8XyLFi303nvvlXtc76k1LkTEAgAAAAAAqJiZM2dq2rRpGjx4sKxWq+P5li1batu2beUe1ycu2F5aXNgdAAAAAAAUshhnH2ZhprmU5NChQ2rYsGGx5+12u/Lz88s9rvcsMXIjVmIBAAAAAACUTbNmzbRq1apiz8+ZM0etWrUq97isvLoIVmIBAAAAAACUzvjx4zVkyBAdOnRIdrtd8+bN0/bt2zVz5kwtWLCg3ON6z5IiD2IlFgAAAAAAPsiwmO9hYr1799ann36qRYsWyWKx6JlnntHvv/+ur776SjfeeGO5x2XlVRmwEgsAAAAAAODCunfvru7duzt1TO9ZQmQirMQCAAAAAAAoavjw4Vq6dKnTW4P3VBcTImIBAAAAAFCJGSZ8mNiJEyfUq1cv1apVSw8//LA2btzolHG9p7aYGBELAAAAAAD4uvnz5yslJUXjx4/Xzz//rLZt26pp06Z68cUXtXfv3nKPazGoFU5XUFDgddfEKsQ1sQAAAAAAvi4jI0NRUVGql/Si/IKDPT0dB3tOjvYkjVN6eroiIyM9PZ1LOnjwoD7++GO9//772rFjhwoKCso1DhdsdwEu7A4AAAAAgPezGGcfZmGmuVxKfn6+1q9fr59++kl79+5VXFxcucfynv1tXojthAAAAAAAwJcsX75cI0aMUFxcnIYOHaqIiAh99dVXOnDgQLnHZOWVG7ASCwAAAAAAVHa1atXSiRMn1L17d7377rvq3bu3gp2w7ZJ45UZELAAAAAAAvIjZ7vBnprmU4JlnntHAgQNVpUoVp45LvPIAIhYAAAAAAKhs/va3v7lkXOKVBxGxAAAAAABAZbJu3TrNmTNH+/fvV15eXpHX5s2bV64xvecK4pUYF3YHAAAAAMCEjP/dcdAMD7NvG/zkk0903XXXaevWrfriiy+Un5+vrVu3atmyZYqKiir3uN5TSXwAEQsAAAAAAHirF198UW+++aYWLFigwMBATZw4Ub///rtuvfVWXXbZZeUe13vqiA8hYgEAAAAAAG+za9cu9erVS5IUFBSkrKwsWSwW/f3vf9e0adPKPa73VBEfRMQCAAAAAMCDDBM+TCwmJkanT5+WJNWsWVNbtmyRJKWlpenMmTPlHpcLtnsBLuwOAAAAAADMrkOHDvr222/VokUL3XrrrRo7dqyWLVumb7/9Vl27di33uMQrL0LEAgAAAAAAZvXOO+8oJydHkvTEE08oICBAq1evVr9+/fT000+Xe1yLwX4ur1VQUOB1EasQEQsAAAAAYFYZGRmKiopS/SdflDU42NPTcbDl5Gj3C+OUnp6uyMhIT0+niIKCAn344Yfq3r274uPjnTq291xECcVwTSwAAAAAAGAG/v7++r//+z/l5uY6fWzvqR24ICIWAAAAAADwtL/85S/auHGj08flmleVCNfEAgAAAADAeSzG2YdZmGkuJRk1apQefvhhHTx4UG3atFFYWFiR11u2bFmucbnmVSXGNbEAAAAAACi7wmteNRhnvmte7XrRfNe8uvvuu/XWW28pOjq62GsWi0WGYchischms5VrfOKVDyBiAQAAAABQesSrsrFarTpy5Iiys7MvelydOnXKNT7bBn0A2wkBAAAAAICrFK6LKm+cuhTilQ8hYgEAAAAAAFdw5c/oxCsfRMQCAAAAAADO1KhRo0v+fH7y5MlyjU288mFELAAAAAAALsL482EWZprLeZ599llFRUW5ZGziFYhYAAAAAACgQm677TbFxsa6ZGziFRyIWAAAAAAAoKxc/fM38QrFELEAAAAAAJAsxtmHWZhpLucqvNugqxCvcEFELAAAAAAAcCmubgXEK1wSEQsAAAAAAHgK8QqlRsQCAAAAAPgck27V8yXEK5QZEQsAAAAAALgL8QrlRsQCAAAAAACuRrxChRGxAAAAAACVkiFzbRs001zciHgFpyFiAQAAAAAAZyNewemIWAAAAAAAwFmIV3AZIhYAAAAAwJtZjLMPszDTXNyJeAWXI2IBAAAAAIDyIl7BbYhYAAAAAACgrPw8PQH4nsKI1aJFC8XHx8vPz3v+MSyMWNu3b1dGRoYMw0fXbAIAAACALzBM+CiD77//Xr1791aNGjVksVj05ZdfXvT4FStWyGKxFHts27atbB/sZKy8gsewEgsAAAAAANfJysrSFVdcoeHDh6t///6lft/27dsVGRnp+Lp69equmF6pEa/gcUQsAAAAAACcr0ePHurRo0eZ3xcbG6vo6GjnT6icvGe/Fio9thMCAAAA8BXdunVTy5YtdeWVV6pDhw7atGlTsWP27t2rzp07KyoqSm3bti32+uuvv67mzZvryiuv1DXXXKN169Y53letWjVXn4JPKLzboJkekpSRkVHkkZub69TzbtWqlRISEtS1a1ctX77cqWOXByuvYDqsxAIAAADgjWw2mzIzM3Xw4EH9smm1jh/dI4vFT3Xrt1Kr1u0UGxurwMBASdJnn33mWNny5Zdf6u6779aGDRuKjBcZGannn39e6enpGj9+fJHXfvnlF7399tv67bffFB4ertmzZ2v06NH673//65ZzhWfVrl27yNfjx49XUlJShcdNSEjQtGnT1KZNG+Xm5mrWrFnq2rWrVqxYoY4dO1Z4/PIiXsG0iFgAAAAAzKwwVmVmZiotLU1Lv5kte+5PqlvjsLq0ylNsNasMQ9q552Mt/ypcR9PqqWGTgerRa1CRLVnp6ekl7jyJiYlR+/bttWLFihI/Pz8/X1lZWQoPD1daWppq1apV5PVnnnlGCxcuVHp6uiZNmqSePXs68/ThQQcOHChyTaqgoCCnjNu4cWM1btzY8XW7du104MABvf7668Qr4GKIWAAAAADM4NxYdfr0aWVlZUmSDhzYqe2/TtWwfgdUvVphhDr747bFIjVqEKBGDXIlbdPGLRP0+ktfasjdb+nJJ590bMlasmRJmeZyxRVX6KGHHlK9evUUExOjoKAgff/9947XT5w4oTZt2ui5557TkiVLNHbsWOJVeZTjDn8u9edcIiMji8QrV7rmmms0e/Zst3zWhRCv4DWIWAAAAADc6UKx6lw7/tgg++l/6dG/nVFpLivdqrnUvPGv+ud7t2n8Mx9o5syZ+uCDD/Too49q0aJFpZ7bvn37NH/+fO3atUsJCQl65513NHjwYMcqrbCwMPXp00fS2dUzu3btKvXYwLk2btyohIQEj86BeAWvQ8QCAAAA4AqliVXnOn48VWeOT9awgWfK9DkBARY98rejemXq3/TAo19q6NChGjlypE6cOKGqVauWaow5c+aoefPmjqgwfPhwPfDAA7LZbJKk4OBgx7FWq9XxPHxLZmamdu7c6fh6z5492rRpk2JiYnTZZZfpiSee0KFDhzRz5kxJ0ltvvaW6deuqWbNmysvL0+zZszV37lzNnTvXU6cgiXgFL0bEAgAAAFARZY1V5zIMQ+vXTNI/RmZKKtvf5TNO25SZZejeQfv0wfvPquZl16lq1aqKiYkp9Rj169fXzJkzlZmZqfDwcH311VdKTEyU1Wot01xwCSbdNlha69evV5cuXRxfP/TQQ5KkoUOHasaMGTpy5Ij279/veD0vL0+PPPKIDh06pJCQEDVr1kwLFy70+JZT4hW8nrMi1v79+5WUlKS0tDSFh4crKSlJ9evXL3acYRiaNGmSfvjhB/n5+SkqKkpPPfWU424Pq1at0ltvvSWbzabLL79czz77rEJDQ4uNk5SUpMTERA0aNIiIBQAAALhBRWLV+bZt/Vk9O+0q19/f0zPsGnjvEWXnGErLmKy69f+rBQsWyGKx6N5779Utt9yiW265Rbm5uWrQoIFyc3OVnp6uWrVqaciQIXrppZf017/+VevWrVPbtm0VFBSkiIgIj1+XCObTuXNnGcaFi9eMGTOKfP3YY4/psccec/Gsys5iXOwsAC9UUFBQrog1cuRI9erVS71799Z3332nDz/8UMnJycWOW7FihZKTkzV9+nT5+/vrvffe086dO/Xyyy/rzJkz6tu3r6ZNm6a6devqlVdeUVhYmMaMGVNsnHPjVSEiFgAAAOA8zoxV51v57Yt6cNjmCo+Tlm7T58uH6m8jn3HCrOAsGRkZioqKUqOHXpQ1KPjSb3ATW26O/vjnOKWnp7vtgu1mcOmryQFepnAlVosWLRQfH1/iLWfPd/LkSW3btk09evSQJHXt2lWHDx/W4cOHSzw+Pz9fubm5MgxDWVlZio2NlSStWbNGiYmJqlu3riRp4MCB+vrrry/4uXv27NGoUaPUr18/Pfroo0pLS9OOHTu0fft2ZWRkXLSQAwAAACjKZrMpPT1dhw4d0rZt27Rp0ybt3LlTKSkpTg1XkhQeXPLPCmUVHWVVTuZv/N3fpCyG+R6+iG2DqLTKsp0wNTVV1atXl79/4e1sLYqLi1NKSopq1KhR5NiOHTvq559/Vvfu3RUWFqbq1atr2rRpkqSUlJQid2GoUaOG43NLimh//PGHJk+erICAAI0YMUJLly7VTTfdxDWxAAAAgFJw5cqqizl9+rSqV0lz2niB1mPKzs4u8XIjAIhX8AGljViljUPbtm3Tvn37tHjxYoWFhentt9/Wq6++qqSkpDKNI0ldunRx3AWkWbNmOnjwYJHXiVgAAADA/3gqVp0vMzNTMdH5ctZmJqtfnlPGASor4hV8xsUiVuFzBQUF8vf3l2EYSk1NVXx8fLFxvvrqK7Vp00YRERGSpJtvvlljx46VJMXHx2vdunWOYw8fPqzY2NgLbl0MDAx0/Ppit68lYgEAAMAXmSVWnS8wMFBnTjnvKjx2w1qqy53AA7z8boOVBf/vgM8p6ZpYMTExaty4sRYvXixJWrp0qRISEoptGZSkmjVrat26dSooKJB09u6CDRo0kCS1a9dOW7du1d69eyVJc+bMUbdu3Zw298KIxTWxAAAAUBm585pVFRETE6NDqc67WHZeQYysVqvTxgMqG1ZewWedvxLrqaee0vjx45WcnKywsDDHNkBJmjBhgjp27KhOnTrp1ltv1d69ezVo0CAFBASoWrVqGjdunKSzdwt86qmn9PDDD8tms6lhw4ZFxnEWVmIBAACgMjDryqpLsVgsysqJk5RR4bHy8w0Z1joKCAio+MSASspisHQDkCQVFBRc8sLuZkXEAgAAgDfw1lhVkp/WLFDfTjMVH1uxFVPzFgWq6V8+VdNmzZw0MzhDRkaGoqKi1Hjsi7IGBXt6Og623BxtnzhO6enpiox03uo/s2PlFfCnstyd0GxYiQUAAAAzqkyx6nxtrr5Jny74RmPvPlbuMfLyDO061Fx9GjVy4syAyod4BZyHiAUAAACUT2WOVefz9/dXXJ2hWvnjm+p0Tck3XrqU9z6N1m13vcKWQeASiFfABRCxAAAAgIvzpVhVksZN2mjt6lsUEfYftW5Rtp8VPv5PqC5vMU516tRx0ezgDBbj7MMszDQXdyJeAZdAxAIAAADO8vVYVZJ27W/Vz/8N1e87v9AdfbMu+fftzCy7pn8ar9bXPqmOnW5y0ywB70a8AkqJiAUAAABfQ6wqnTZX36zjx6/WG9Onq1bsdvXsckaREUUv5H7gUIEWr6yuHHsb3XHPeMXFxXlotoD3IV4BZUTEAgAAQGVls9mUlZWl06dPE6vKqFq1WHXt8YQyMzM1a9Fy5efslb//GcmwKN8WrYSabTRwaH/FxMTwd3BvYvz5MAszzcWNiFdAORGxAAAA4O2IVc4XHh6u9h37KCIiQuHh4YqIiFBoaCh/3wYqgHgFVBARCwAAAN6CWOUafn5+xCrAhYhXgJMQsQAAAGA2xCrXIFb5Du42aA7EK8DJiFgAAADwFGKVaxCrAM8iXgEuQsQCAACAqxGrXINYBZgL8QpwMSIWAAAAnIVY5RrEKlwQdxs0BeIV4CZELAAAAJQVsco1iFWAdyFeAW5GxAIAAMCFEKtcg1gFeDfiFeAhRCwAAAAQq1yDWAWnYdugKRCvAA8jYgEAAPgOYpVrEKuAyo14BZgEEQsAAKDyIVa5BrEK8C3EK8BkiFgAAADei1jlGsQqeIrlz4dZmGku7kS8AkyKiAUAAGB+xCrXIFYBOBfxCjA5IhYAAIB5EKtcg1gF4GKIV4CXIGIBAAC4H7HKNYhV8BrcbdAUiFeAlyFiAQAAuA6xyjWIVQAqgngFeCkiFgAAQMURq1yDWAXAmYhXgJcjYgEAAJQesco1iFWorCzG2YdZmGku7kS8AioJIhYAAEBxxCrXIFYBcCfiFVDJELEAAIAvI1a5BrEKgCcRr4BKiogFAAB8AbHKNYhVwJ+426ApEK+ASo6IBQAAKhNilWsQqwCYGfEK8BFELAAA4I2IVa5BrALgTYhXgI8hYgEAADMjVrkGsQqoAB/dqmcmxCvARxGxAACAGZQnVr322mv6/vvvdeTIEX3yySdq2LBhicetX79eY8eOVZ06dRzPvf/++woODpYkzZw5UwsWLJBhGKpTp47Gjx+viIiIYuMkJSUpMTFRgwYNKudZuh+xCkBlQrwCfBwRCwAAuJMzVlZ17dpVd911l+69995LHlu/fn3NmjWr2PM//vijFi5cqOTkZIWFhWnatGmaPHmyHn/88TLPxwyIVQAqM+IVAElELAAA4Bqu2AbYunXrCo+xY8cOtWrVSmFhYZKkDh06aOTIkReMV3v27NGoUaOUkpKiBg0a6MUXX1RAQECF51FexCrAPSzG2YdZmGku7kS8AlAEEQsAAFSE2a5ZtW/fPg0ePFhWq1W9e/fWwIEDJUmJiYmaN2+eTpw4oZiYGC1atEhZWVlKT09XVFRUsXH++OMPTZ48WQEBARoxYoSWLl2qm266yW3nQawC4MuIVwBKRMQCAAClYbZYda4mTZpo0aJFCg8PV2pqqsaOHavo6GjdeOONatu2rQYPHqwHH3xQVqtVXbp0kXT270Al6dKli+NaWc2aNdPBgwddOndiFWAShsx1wXYzzcWNiFcALoqIBQAAzmXmWHW+8PBwx6/j4uLUvXt3bdy4UTfeeKMkacCAARowYIAkafPmzYqLi3NsIzxfYGCg49dWq1U2m82pcyVWAcCFEa8AlAoRCwAA3+RNsep8x48fV0xMjPz8/JSVlaVVq1apT58+RV6vVq2acnJyNHXqVA0ZMsRtcyNWAUDpEa8AlAkRCwCAys0bYtUrr7yilStX6sSJExo9erRCQkL05ZdfSpImTJigjh07qlOnTlq6dKnmzp3rWCnVtWtX3XLLLY5xRo8eLcMwlJ+fr549e2rQoEEumzOxCvBOXLDdHCyGYfjoqQNwhoKCAq+LWIWIWAAAeEes8kbEKsC7ZWRkKCoqSi3ufVHWwGBPT8fBlpejze+NU3p6uiIjIz09Hbdh5RWACmElFgAA3oVY5RrEKgBwHeIVAKcgYgEAYE7EKtcgVgE+grsNmgLxCoBTEbEAAPAsYpVrEKsAwHOIVwBcgogFAIB7EKtcg1gFAOZBvALgUkQsAACci1jlGsQqACXhboPmQLwC4BZELAAAyodY5RrEKgDwHsQrAG5FxAIA4OKIVa5BrAIA70W8AuARRCwAAM4iVrkGsQqAU3C3QVMgXgHwKCIWAMDXEKtcg1gFAJUX8QqAKRCxAACVFbHKNYhVAOA7iFcATIWIBQDwdsQq1yBWAfAItg2aAvEKgCkRsQAA3oJY5RrEKgBAIeIVAFMjYgEAzIZY5RrEKgDAhRCvAHgFIhYAwFOIVa5BrALgDSzG2YdZmGku7kS8AuBViFgAAFcjVrkGsQoAUF7EKwBeiYgFAHAWYpVrEKsAAM5CvALg1YhYAICyIla5BrEKQKXE3QZNgXgFoFIgYgEALoRY5RrEKgCAuxCvAFQqRCwAALHKNYhVAABPIV4BqJSIWADgO4hVrkGsAgDJYhiyGObZq2emubgT8QpApUbEAoDKh1jlGsQqAIBZEa8A+AQiFgB4L2KVaxCrAADegngFwKcQsQDA/IhVrkGsAoBy4G6DpkC8AuCTKmvE2rFjh4YOHarjx48rOjpaM2bMUNOmTYu83zAMPfbYY1q0aJGsVquqVq2qf//732rYsKEkacGCBXrkkUdUUFCgK664Qh988IHCw8O1d+9etW3bVsePH3f7OQOo3Gw2mzIyMpSVlaXMzMwiseq1117T999/ryNHjuiTTz5xfK861/r16zV27FjVqVPH8dz777+v4OBgSdLMmTO1YMECGYahOnXqaPz48YqIiNDhw4c1ZMgQLV261PUn6QHEKgBAZUG8AuDTvCVi2Ww2/bD6J/2xfb8y0nJks0sBgX6qUiVEV19zhZo3T5TFYtGIESN08803q0+fPvr22291++23a+bMmUXGWr58uZYsWaIPPvhAAQEB+ve//61Ro0bptdde05kzZzR06FBNnz5d9erV00svvaSxY8fqgQce0KFDh2Sz2fTLL7946HcBQGVit9t15swZLVn5vfadOKWMvHwZkkKtVsVHhKrbddcqtnp1de3aVXfddZfuvffei45Xv359zZo1q9jzP/74oxYuXKjk5GSFhYVp2rRpmjx5sh5//HEXnZnnEKsAAJUV8QoAZN6IZbfbNefTBdr0837lZlZTYECUpCjH60d2G9rw4w+qGrdMf7n2cv3+++96++23VVBQoM6dO+vll1/W/v37VaNGDcd7bDab8vLydObMGYWGhiojI0PVq1dXQUGBvv/+eyUmJqp27doqKChQ//79NXbsWI0aNUo2m02GYeidd97R6tWrlZmZqUceeUTt27f3wO8MAG+WlZWld+d+od8yziirZl35RScUed2w2fTN51+pgb9Fw2+6UXFxceX+rB07dqhVq1YKCwuTJHXo0EEjR44sEq+mTp3qld/XiFUA4HoW4+zDLMw0F3ciXgHAOcwUsY4ePap/TfpUmScSFODfQIEBxY+xWCwKCYzXmVPS5x9vkNUaUOS1uLg4paSkFIlXHTt21M8//6zu3bsrLCxM1atX17Rp0yRJKSkpSkj43w+RNWrUKPJ7kJ6eriZNmmjkyJFas2aNXn/9da/5IQ+AOfx30y9K/n6N0uo1kaWaVX4lHGOxWlVQp6G2GYbGL/xWverUvOS4+/bt0+DBg2W1WtW7d28NHDhQkpSYmKh58+bpxIkTiomJ0aJFi5SVlaX09HRJ3vV9jVgFAPBVxCsAKIGnI9bRo0f1+ssfyZLXSAH+pfvBJMCvivJzrXr15Xf1+BMjZbVaSzxu27Zt2rdvnxYvXqywsDC9/fbbevXVV5WUlCRJF/1BKCQkRJ07d5YktWzZUocOHSrTeQHwbWt+3qB//7xZuQ2bqTTf2SwWi3Iva6AvThxT5pkzFzyuSZMmWrRokcLDw5WamqqxY8cqOjpaN954o9q2bavBgwfrwQcflNVqVZcuXSSd/T4vmfv7GrEKAICzSvqPXQCAPxVGrBYtWig+Pl5+fq7/tmkYhiZP+lSWvEZl+iElOChKufmndfxgrGbOmCvDMJSamqr4+Pgix3311Vdq06aNIiIi5Ofnp5tvvlnr16+XJMXHx+vw4cOOYw8fPqzY2FjHeQcGBjpe8/Pzk81mq8ipAvAhJ0+dUvKadcqtVa/M7zViqivbbujX37eV+Hp4eLjCw8MlSXFxcerevbs2btzoeH3AgAGaNWuWZsyYodatWysuLs6xjdBM39f8/PwUFRWlmjVrqkmTJrryyivVsGFDxcfHKywsjHAFAJ5gmPDhg4hXAFAK7oxYcz9fpNMn4sv8Q0pgQLgiwhJ0/NQf2vxzmj7+6GMlJCQU2TIoSTVr1tS6detUUFAgSVq1apUaNGggSWrXrp22bt2qvXv3SpLmzJmjbt26VfykAPi8d+bMU2a9xuUfwGrVwg2/OL53nev48eOO1bFZWVlatWqVGjduXOR1ScrJydHUqVM1ZMiQ8s/DiYhVAACUDtsGAaAMXL2d0DAMbVy3VwH+9cv1/sT6t2jrzi+059AZbdnppylT3pEkTZgwQR07dlSnTp106623au/evRo0aJACAgJUrVo1jRs3TpIUFhamp556Sg8//LBsNpsaNmzo2E4I77R//34lJSUpLS1N4eHhSkpKUv36xf/5MgxDkyZN0g8//OD4gfqpp55S7dq1JZ2NnG+99ZZsNpsuv/xyPfvsswoNDS02TlJSkhITEzVo0CCXnxu8x+EjKfrD7idLOcJ/6oK5ytq2RQWZp7Vl2bfqseZ7ffv110W+ry1dulRz586V1WqVzWZT165ddcsttzjGGD16tAzDUH5+vnr27Omxfz7ZBggAQPlYDMPw0UVnAFBxBQUFTo1Y69dv1Ox//6bgwKoVn5tlp155c9QFr30F3zBy5Ej16tVLvXv31nfffacPP/xQycnJxY5bsWKFkpOTNX36dPn7++u9997Tzp079fLLL+vMmTPq27evpk2bprp16+qVV15RWFiYxowZU2wc4hVKMuWTz/R9eGy54tX5Gh7erefuHVbxSbkBsQoAvFdGRoaioqLU+vYXZA0M9vR0HGx5Odrw8ZNKT09XZGSkp6fjNmwbBIAKcPZ2wi2/7lRQQIxT5pabHabdu/c4ZSx4p5MnT2rbtm3/3969B9ld1nke/5z0JQ25NCaEJAgJ4TIxRlRMmBV3CLIZg2YEVEBmikWEgSkWZibK6FLqlCC4w45as5Y46GbKG1LjbVEXJHjZDBBGUEHiZVAUgRAuSTBROhft9OX89o9AS0gDSbrP6ac7r1fVryo53f3r79GEqn7neX5P3vCGNyRJFi9enMcff3yn55o9U29vb7Zv356qqrJt27YcdNBBSZI77rgj8+bNy2GHHZYkOeOMM/Ktb33rOb/vQw89lIsuuihvectb8u53vzu9vb3D+8YYdTb8rntYwlWSPPH7HX9GS2QbIAA0hm2DAMNguLYTbu7anlpt4rDMtF/7tNz701/mqKOOHJb7Mfps2LAh06ZNGzhVrVarZfr06Vm/fv0uz0JbtGhRfvjDH+akk07KhAkTMm3atCxfvjxJsn79+sycOXPgcw8++OCBP+ODBdtf/vKXueaaa9LW1pYLLrggK1euzOtf//oGvlNK99vtPcN2r80tbenq6soBBxwwbPfcW1ZWAUBzWHkFMIyGuhKrqg/faoJarSXbh/EHRkan3f1B+r777svDDz+cm2++OTfffHOOPfbYfOhDH9rj+yTJiSeemI6OjrS0tGT+/Pl59NFH93huxpbhezJgUrW0jPhqvtbW1hxwwAGZPXt2Zs+ebWUVwFg20icLOm0wiZVXAA2xtyuxWtuH798Uevt+n6kHDv3ZWYxeT//56+vrS2tra6qqyoYNGzJjxoxdPvfGG2/MggULMmnSpCTJG9/4xixbtixJMmPGjNx1110Dn/v444/noIMOes44297ePvDrpx+gzb5t/DCe0Nrasz0TJw7PCtW91dfXlyeffDJPPvlkkqSjoyOTJk0aWIXV1tY2ovMBwFhj5RVAA+3pSqxp0yalXt/1GPi90Vc9kVctePmw3IvRacqUKZk7d25uvvnmJMnKlSszc+bMXbYMJsmLX/zi3HXXXenr2/Hn7/bbb88RRxyRJDnuuOPys5/9LGvWrEmSfOUrX8mSJUua8yYYE6btP3wPup3aOi777bffsN1vOHR3d+fXv/51HnzwwfzkJz/Jvffem7Vr1+a3v/3tiK8SA4CxwMorgCbY3ZVYx5/wx7nj1v+bjnGzhvw9O19Uz5Qpw/Pwd0av9773vfnABz6Qz3zmM5kwYUIuv/zygY9deeWVWbRoUU444YS89a1vzZo1a3LmmWemra0tBx54YN773vcmSSZMmJC///u/z9/93d+lv78/Rx555E73gRdy1LSpuWfrtrTsP2FI96mqKgfvP36Ypmqc7u7ugaCVWJkFMJrVqh1XKUqapZlqVanHtQCMYX19fc8Zsa764PJ0bTh0SPfv7+/JK1/Tn7P+61uGdB+A4dDT05O/+eSns+XIlw7pPtW6R/P+Rcdm3lFHDdNkI0PMAijf5s2b09nZmQVn/o+0tA/fCuKh6u/pzg+/9L50dXVl8uTJIz1O09g2CDACnm874alvXpSe+mNDu//+D+e005cOdUyAYdHe3p4TDjsk1dYte32Pql7PvL7fjfpwldhmCAB7SrwCGEGDRayXzn9JXr6gM719W/fqnr31x/OWtx6fjo5y/oUI4C9O/rMctuHhVHv5AP/OB36WZX9+xjBPVQYxC6BgI32yoNMGk4hXAEV4dsR6+3lnZPZLtqanr2uP7tNTfzxLTj4ix/7xMQ2aFGDv1Gq1/P155+TgB+5Nvbdnt7+uqqpMeuDnueSNr09nZ2cDJyyHmAUAO/PMK4AC9fX15dFHH82//O/P57ur1qS1Pju12nP/e0Nf//a0TVib0//8hCxY8IomTgqwZ7q7u3PNl/5P7ukbl/rMQ573c+tP/iZHPrkhf3P6WzL9oGlNmrB8npkF0HgDz7x6a4HPvPryvvfMK/EKoGDd3d35/ve/n3+97oY8+Kvf5HdbWtOSqWkZ15re/u6k5Td50dSWvPTog3Pqm07K+PHln8IFkCT33veL3HjnD/LAlm3ZvP+k5EVTk1ot1ZbNmdD1mxza0ZYTXjo3/+U/vya1Wm2kxy2amAUw/J4Zr1rbyolXfb3iFQCF6u3tzbp16/Lggw/mR6v/I9u2/S4vmtKZl798fiZOnOgHO2BUqtfr6e/vz5qHH84vHlqTer2eQ2fOzEuOOlKAGQIxC2DoxKuytI70AAC8sLa2tsyaNSuzZs3Ka1/72pEeB2BYLVy4MFVVZfv27dmyZUu2bt2aLVu2eL7TXuru7h54blYiZgEw+olXAACMuFqtlo6OjnR0dGTatGli1jASswCGoKp2XKUoaZYmEq8AACiOmNU4YhYAo414BQBA8cSsxhGzACideAUAwKgjZjWOmAXwB7Vqx1WKkmZpJvEKAIBRT8xqHDELgJEmXgEAMOaIWY0jZgHQbOIVAABjnpjVOGIWMKZVT12lKGmWJhKvAADY54hZjSNmATDcxCsAAPZ5YlbjiFkADJV4BQAAzyJmNY6YBYwmtfqOqxQlzdJM4hUAALwAMatxxCwAXoh4BQAAe0jMahwxC4BnE68AAGCIxKzGEbOAEeW0wSKIVwAAMMzErMYRswD2PeIVAAA0mJjVOGIWwNgnXgEAQJOJWY0jZgHDqVbtuEpR0izNJF4BAMAIE7MaR8wCGP3EKwAAKIyY1ThiFsDoI14BAEDhxKzGEbOA51VVO65SlDRLE4lXAAAwyohZjSNmAZRHvAIAgFFOzGocMQtg5IlXAAAwxohZjSNmwb7FaYNlEK8AAGCME7MaR8wCaDzxCgAA9jGjPWZ9+MMfzqpVq7Ju3bp88YtfzJFHHjno5919991ZtmxZZs+ePfDapz/96XR0dCRJrr322nzjG99IVVWZPXt2LrvsskyaNGmX+1x++eWZN29ezjzzzBecTcwCGH7iFQAA7ONGW8xavHhx3va2t+X8889/wc89/PDD8/nPf36X17/3ve/lpptuymc+85lMmDAhy5cvzzXXXJNLL710WGcVs2CUq566SlHSLE0kXgEAADspPWa96lWvGvI97r///hxzzDGZMGFCkuT444/PhRde+Jzx6qGHHspFF12U9evX54gjjsg//MM/7FV4ErMA9px4BQAAPK/SY9bzefjhh3PWWWelpaUlJ598cs4444wkybx58/LVr341mzZtypQpU7JixYps27YtXV1d6ezs3OU+v/zlL3PNNdekra0tF1xwQVauXJnXv/71Q55PzAJ4YeIVAACwR0ZLzHrJS16SFStWZOLEidmwYUOWLVuWAw44IK973euycOHCnHXWWXnHO96RlpaWnHjiiUmS1tbBf0Q68cQTB56VNX/+/Dz66KMNmVnMgrI4bbAM4hUAADAkpcasiRMnDvx6+vTpOemkk7J69eq87nWvS5KcfvrpOf3005MkP/3pTzN9+vSBbYTP1t7ePvDrlpaW9Pf3N3DyPxCzAJJxIz0AAAAwtjwds6ZNm5Y5c+bk6KOPzvz58zNr1qxMmTKlacFl48aNqdfrSZJt27bl9ttvz9y5c3f6eLIjEH3yk5/M2Wef3ZS5huLpkPXggw/mJz/5Se69996sXbs2v/3tb4tY7QaUZdWqVTn55JNz8MEHp1ar5etf//oLfs1tt92WBQsWpKOjI4cffng++clPNn7QF2DlFQAA0FDDvTLrH//xH3Pbbbdl06ZNufjii7PffvsN/EB25ZVXZtGiRTnhhBOycuXKXH/99QMrpRYvXpxTTjll4D4XX3xxqqpKb29vli5dmjPPPHO433rDWZkFDVZVO65S7OEs27Ztyyte8Yqce+65Oe20017w8x966KEsXbo0F1xwQa677rp897vfzUUXXZRp06bt1tc3Sq2qSvp/AQAA2NeUss1wLBKzYO9s3rw5nZ2defXSK9La1jHS4wzo6+3O91a8P11dXZk8efIefW2tVsvXvva1vOlNb3rOz7n00ktzww035Oc///nAaxdeeGF+/OMf584779zbsYfMyisAAGBElfrMrLHAyiwYmzZv3rzT78ePH5/x48cP+b533nlnlixZstNrJ510Uj71qU+lt7d3xP6bIV4BAABFEbMaR8yCPVPqaYOHHnroTq9fdtllufzyy4d8//Xr12f69Ok7vTZ9+vT09fVl48aNmTlz5pC/x94QrwAAgKKJWY0jZsHo9Mgjj+y0bXA4Vl09rVar7fT7p5829ezXm0m8AgAARhUxq3HELBgdJk+evMfPvNodM2bMyPr163d67Yknnkhra2umTp067N9vd4lXAADAqCZmNY6YxT6veuoqRYNnOe6443LjjTfu9Nq3v/3tLFy4cET/votXAADAmCJmNY6YBaPL1q1b86tf/Wrg9w899FB+9KMfZcqUKZk1a1be85735LHHHsu1116bZMfJgh//+MdzySWX5IILLsidd96ZT33qU/nCF74wUm8hiXgFAACMcWJW44hZULa77747J5544sDvL7nkkiTJOeeck89+9rNZt25d1q5dO/DxOXPmZMWKFXnnO9+Zf/7nf87BBx+cj33sYznttNOaPvsz1aqnn7wFAACwDxKzGkfMYrTavHlzOjs785qTrkhrW8dIjzOgr7c7d3zr/enq6mrIM69KZeUVAACwT7Myq3GszAKGg3gFAADwDGJW44hZwN4QrwAAAJ6HmNU4YhbFq1c7rlKUNEsTiVcAAAB7QMxqHDELGIx4BQAAMARiVuOIWUAiXgEAAAwrMatxxCyarnrqKkVJszSReAUAANBAYlbjiFmwbxCvAAAAmkjMahwxC8Ym8QoAAGAEiVmNI2YxVLUktYK26tVGeoARIl4BAAAURMxqHDELRifxCgAAoGBiVuOIWTA6iFcAAACjiJjVOGIWu6iqHVcpSpqlicQrAACAUUzMahwxC8ogXgEAAIwhYlbjiFkwMsQrAACAMUzMapyhxKwlS5Zk/fr1GTduXCZNmpSrr746r3zlK3f6nDVr1uTtb397Vq9enaOOOip33333Th//yEc+ks9+9rNpbW1NR0dHrr766hx77LFZs2ZNFi5cmI0bNw77e97X1KrCThssaJZmEq8AAAD2IWJW4zxfzJo0aVJaW//wI/iXv/zlHHDAAUmSr3/96znvvPNyzz337HS/yZMn54Mf/GC6urpy2WWX7fSxH//4x7n66qtz7733ZuLEibnuuuty8cUX5wc/+EFj3ySMAPEKAABgHyZmDZ/f//73+cGd16e9dn/aW3+dtpbfpapq6envTHfvQTlwxmtz8qlvy+TJkwfCVZJ0dXVl3Lhxu9xvypQp+ZM/+ZPceuutg36/3t7ebNu2LRMnTsyTTz6ZQw45ZKePv//9789NN92Urq6ufOxjH8vSpUuH8+1C04hXAAAADBCz9lxVVfn3VV/I5LaVOf8tWzNxwrNDVHeSDVn76I/z6Wu+kNl/9Fc59U1n59xzz80tt9ySJPnmN7+5R9/zFa94RS655JLMmTMnU6ZMyfjx47Nq1aqBj2/atCkLFizIFVdckW9+85tZtmyZeLU3qqeuUpQ0SxOJVwAAADwnMev5dXd3599uvjLnnfGrzJw+LsmuK6ieNuuQcVl27sZ8/57/mav/111Zvnx5Ojo68rnPfS7vfve7s2LFit3+vg8//HBuuOGGPPDAA5k5c2Y+/vGP56yzzhpYpTVhwoSceuqpSZLjjjsuDzzwwFDeJoyo5/5bBQAAAM/ydMyaNm1a5syZk6OPPjrz58/PrFmzMmXKlH3qxL3+/v6svPkDedcFT4er3fOfXlXPGxd9O8s/cWn6+/tzzjnn5JZbbsmmTZt2+x5f+cpX8rKXvSwzZ85Mkpx77rlZtWpV+vv7k+x43tbTWlpaBl6H0cjKKwAAAPbavrwy6/ZbPpcL/+LBjB+/Z+tCNm/pT0d7laPnfDvf/tbX0r29JVOnTs2UKVN2+x6HH354rr322mzdujUTJ07MjTfemHnz5qWlpWVP3wbPo1ZVqVXl7NUraZZmEq8AAAAYNvtKzPrNbzblkKm35cCpe76hqWtzPWecvy6/766y6cm3Z+5Ljs03vvGN1Gq1nH/++TnllFNyyimnZPv27TniiCOyffv2dHV15ZBDDsnZZ5+dq666Km9+85tz1113ZeHChRk/fnwmTZqU6667rgHvFEZerar20WwHAABA042VmPVv3/5Elp19W1pba0O6z4/urbKu+6r82Z+dPkyTMRw2b96czs7OHP/ay9La2vHCX9AkfX3duf3WD6SrqyuTJ08e6XGaxsorAAAAmmasrMyaOP7BIYerJHnl/Fpuv+4bqZaellpt6PdjmNWfukpR0ixNJF4BAAAwYkZjzOrt7c3E/X49bPdrrW1IT09Pxo8fP2z3hLFEvAIAAKAYoyFmbdq0KS+e0Z1keFZKtbVuSb2+jy6pgd0gXgEAAFCs0RCzhoN4VSanDZZBvAIAAGDUKCFmTZ06Nfev7kiyfVju19s3Ka2tfjyH5+JvBwAAAKPWSMSstra2bP39tCSPDsv9+qoZnncFz0O8AgAAYMxoVszasv3w9PY+kra2oT33avV/VDli7huGPA8NUj11laKkWZpIvAIAAGDMalTMOmbhW/P1b30vZ7yxZ0jz3fr9Q/Lf3vnGId0DxjrxCgAAgH3GcMWsKVOm5if3nJCNm76VA6eO26tZbrmzNS895q+z//7779XXw75CvAIAAGCfNZSYdfyJ5+QT/3p//vtfPZjx4/csYD3wcJV7H3pdLvrbU4fjbdAoVbXjKkVJszSReAUAAABP2ZOY1dLSkj9delk+/C8fzHmn/yoHz9i95199755x+cHP/jQX/e2HnTIIu8HfEgAAAHgOuxOzlr7pylz/b1/MpLaVOX3plkycMPgqrLWP1vO170zP7D+6IBcvOyttbW1NfjcwOolXAAAAsJueK2bNnn1pnnji3Hzmhs+m1ndfOtqeSFvL71Kvaunt70x370GZOuO1Of+v355JkyaN9NtgN9WqHVcpSpqlmcQrAAAA2EvPjlkvfemH0tvbm56envT29qZer2e//fZLR0dHxo3buwe7w75OvAIAAIBhUqvV0t7envb29pEeBcYM8QoAAABgME4bLII1iwAAAAAUS7wCAAAAoFi2DQIAAAAMolbfcZWipFmaycorAAAAAIolXgEAAABQLNsGAQAAAAbjtMEiWHkFAAAAQLHEKwAAAACKZdsgAAAAwGCqp65SlDRLE1l5BQAAAECxxCsAAAAAimXbIAAAAMAgalWVWkEn/JU0SzNZeQUAAABAscQrAAAAAIpl2yAAAADAYKpqx1WKkmZpIiuvAAAAACiWeAUAAABAsWwbBAAAABhMlaQ+0kM8w765a9DKKwAAAADKJV4BAAAAUCzbBgEAAAAGUauq1Ao64a+kWZrJyisAAAAAiiVeAQAAAFAs2wYBAAAABlMlKWmrXkGjNJOVVwAAAAAUS7wCAAAAoFi2DQIAAAAMpqoK2zZY0CxNZOUVAAAAAMUSrwAAAAAolm2DAAAAAIOpJ6mN9BDPUB/pAUaGlVcAAAAAFEu8AgAAAKBYtg0CAAAADKJWVakVdMJfSbM0k5VXAAAAABRLvAIAAACgWLYNAgAAAAymqnZcpShpliay8goAAACAYolXAAAAABTLtkEAAACAwdg2WAQrrwAAAAAolngFAAAAQLFsGwQAAAAYjG2DRbDyCgAAAIBiiVcAAAAAFMu2QQAAAIDB1JPURnqIZ6iP9AAjw8orAAAAAIolXgEAAABQLNsGAQAAAAZRq6rUCjrhr6RZmsnKKwAAAACKJV4BAAAAUCzbBgEAAAAGU1U7rlKUNEsTWXkFAAAAQLHEKwAAAACKZdsgAAAAwGDqVVIraKtevaBZmsjKKwAAAACKJV4BAAAAUCzbBgEAAAAG47TBIlh5BQAAAECxxCsAAAAAimXbIAAAAMCgCts2mJJmaR4rrwAAAAAolngFAAAAQLFsGwQAAAAYjNMGi2DlFQAAAADFEq8AAAAAKJZtgwAAAACDqVcp6oS/ekGzNJGVVwAAAAAUS7wCAAAAoFi2DQIAAAAMpqrvuEpR0ixNZOUVAAAAAMUSrwAAAAAolm2DAAAAAIOpqh1XKUqapYmsvAIAAACgWOIVAAAAAMWybRAAAABgMPUqSUFb9eoFzdJEVl4BAAAAUCzxCgAAAIBi2TYIAAAAMBinDRbByisAAAAAiiVeAQAAAFAs2wYBAAAABlOlrK16BY3STFZeAQAAAFAs8QoAAACAYtk2CAAAADAYpw0WwcorAAAAgDHqmmuuyZw5c9LR0ZEFCxbk9ttvf87PvfXWW1Or1Xa57rvvviZOvCvxCgAAAGAM+tKXvpR3vOMded/73pfVq1fn+OOPzxve8IasXbv2eb/uF7/4RdatWzdwHXXUUU2aeHDiFQAAAMBg6vXyrj3wT//0T/nLv/zLnH/++Zk3b14++tGP5tBDD80nPvGJ5/26gw46KDNmzBi4WlpahvK/4pCJVwAAAACjyObNm3e6tm/fvsvn9PT05Ic//GGWLFmy0+tLlizJHXfc8bz3P+aYYzJz5swsXrw4t9xyy7DOvjfEKwAAAIBR5NBDD01nZ+fAddVVV+3yORs3bkx/f3+mT5++0+vTp0/P+vXrB73vzJkzs3z58lx//fX56le/mrlz52bx4sVZtWpVQ97H7nLaIAAAAMBgCj1t8JFHHsnkyZMHXh4/fvxzfkmtVnvWLapdXnva3LlzM3fu3IHfH3fccXnkkUfykY98JIsWLRrK5ENi5RUAAADAKDJ58uSdrsHi1YEHHpiWlpZdVlk98cQTu6zGej6vfvWrc//99w955qEQrwAAAADGmPb29ixYsCDf+c53dnr9O9/5Tl7zmtfs9n1Wr16dmTNnDvd4e8S2QQAAAIDBFLptcHddcsklOfvss7Nw4cIcd9xxWb58edauXZsLL7wwSfKe97wnjz32WK699tokyUc/+tEcdthhmT9/fnp6enLdddfl+uuvz/XXXz/sb2VPiFcAAAAAY9CZZ56ZTZs25Yorrsi6devyspe9LCtWrMjs2bOTJOvWrcvatWsHPr+npyfvete78thjj2W//fbL/Pnzc9NNN2Xp0qUj9RaSJLWqKikhAgAAAIyszZs3p7OzM3964HlpHdc+0uMM6Kv35P9t/HS6urp2emD7WGflFQAAAMBg6lWSgtb81AuapYk8sB0AAACAYolXAAAAABTLtkEAAACAQVRVPVVVH+kxBpQ0SzNZeQUAAABAscQrAAAAAIpl2yAAAADAYKqqrBP+qoJmaSIrrwAAAAAolngFAAAAQLFsGwQAAAAYTFUlKWirnm2DAAAAAFAW8QoAAACAYtk2CAAAADCYej2p1Ud6ij+oCpqliay8AgAAAKBY4hUAAAAAxbJtEAAAAGAwThssgpVXAAAAABRLvAIAAACgWLYNAgAAAAyiqtdTFXTaYOW0QQAAAAAoi3gFAAAAQLFsGwQAAAAYjNMGi2DlFQAAAADFEq8AAAAAKJZtgwAAAACDqVdJraCterYNAgAAAEBZxCsAAAAAimXbIAAAAMBgqipJfaSn+APbBgEAAACgLOIVAAAAAMWybRAAAABgEFW9SlXQaYOVbYMAAAAAUBbxCgAAAIBi2TYIAAAAMJiqnrJOGyxoliay8goAAACAYolXAAAAABTLtkEAAACAQThtsAxWXgEAAABQLPEKAAAAgGLZNggAAAAwGKcNFkG8AgAAABhEX3qTgh4z1ZfekR5hRIhXAAAAAM/Q3t6eGTNm5N/XrxjpUXYxY8aMtLe3j/QYTVWr9tVH1QMAAAA8h+7u7vT09Iz0GLtob29PR0fHSI/RVOIVAAAAAMVy2iAAAAAAxRKvAAAAACiWeAUAAABAscQrAAAAAIolXgEAAABQLPEKAAAAgGKJVwAAAAAUS7wCAAAAoFjiFQAAAADFEq8AAAAAKJZ4BQAAAECxxCsAAAAAiiVeAQAAAFAs8QoAAACAYolXAAAAABRLvAIAAACgWOIVAAAAAMUSrwAAAAAolngFAAAAQLHEKwAAAACKJV4BAAAAUCzxCgAAAIBiiVcAAAAAFEu8AgAAAKBY4hUAAAAAxRKvAAAAACiWeAUAAABAscQrAAAAAIolXgEAAABQLPEKAAAAgGKJVwAAAAAUS7wCAAAAoFjiFQAAAADFEq8AAAAAKJZ4BQAAAECxxCsAAAAAiiVeAQAAAFAs8QoAAACAYolXAAAAABRLvAIAAACgWOIVAAAAAMUSrwAAAAAolngFAAAAQLHEKwAAAACKJV4BAAAAUCzxCgAAAIBiiVcAAAAAFEu8AgAAAKBY4hUAAAAAxRKvAAAAACiWeAUAAABAscQrAAAAAIolXgEAAABQLPEKAAAAgGKJVwAAAAAUS7wCAAAAoFjiFQAAAADFEq8AAAAAKJZ4BQAAAECxxCsAAAAAiiVeAQAAAFAs8QoAAACAYolXAAAAABRLvAIAAACgWOIVAAAAAMUSrwAAAAAolngFAAAAQLHEKwAAAACKJV4BAAAAUCzxCgAAAIBiiVcAAAAAFEu8AgAAAKBY4hUAAAAAxRKvAAAAACiWeAUAAABAsf4/qixpoeSKwDkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Choose a source by tk (preferred)\n", "source_tk = \"5136506604482101815\"\n", "\n", "ax, nodes_tt = ncd.plot_travel_time_from_source(\n", " dfROHR,\n", " TMat=TMat,\n", " map_nodes_tk_ind=map_nodes_tk_ind,\n", " source=source_tk, # or pass an integer matrix index\n", " cmap=\"viridis\",\n", " linewidth_range=(7, 15),\n", " node_size=200,\n", " ttr_norm=\"percentile\", ttr_percentiles=(5, 95),\n", " treat_zero_as_unreachable=True, # hides unreachable nodes; source remains at 0.0\n", " highlight_keys=[source_tk], # star the source (and any others you pass)\n", " highlight_match=\"both\",\n", " colorbar_label=\"Travel time [h]\",\n", " show_axis=False,\n", " show_values=True,\n", " dt_col='dt',\n", " show_edge_dt=True,\n", " annotation_fmt=\"{:.2f}\"\n", ")\n", "\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "23f18e06", "metadata": {}, "source": [ "If we compare this plot to the first one, that used the fluid age calculated by SIR 3S directley, we observe that they are identical." ] }, { "cell_type": "markdown", "id": "e412a1cb", "metadata": {}, "source": [ "# Meshed Network" ] }, { "cell_type": "markdown", "id": "a6d6d3c4", "metadata": {}, "source": [ "The model 9_2 differs to 9_1 only in that the upper and lower branch are connected via a pipe." ] }, { "cell_type": "markdown", "id": "1b34591a-c2d1-486b-b853-ed38cd5c8323", "metadata": {}, "source": [ "## Read Model and Results" ] }, { "cell_type": "code", "execution_count": 34, "id": "29b18b2c-f2df-4b27-a96c-0e03af6f16b0", "metadata": {}, "outputs": [], "source": [ "dbFilename=\"Example9_2\"\n", "dbFile=os.path.join(os.path.dirname(os.path.abspath(dxAndMxHelperFcts.__file__))\n", " +'/Examples/'\n", " +dbFilename\n", " +'.db3'\n", ")" ] }, { "cell_type": "code", "execution_count": 57, "id": "f8b5221c-0fd1-4fbc-abaf-81325ad2629d", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO ; Dx.__init__: dbFile (abspath): c:\\users\\aUserName\\3s\\pt3s\\PT3S\\Examples\\Example9_2.db3 exists readable ...\n", "INFO ; Dx.__init__: SYSTEMKONFIG ID 3 not defined. Value(ID=3) is supposed to define the Model which is used in QGIS. Now QGISmodelXk is undefined ...\n", "INFO ; PT3S.dxAndMxHelperFcts.readDxAndMx: QGISmodelXk not defined. Now the MX of 1st Model in VIEW_MODELLE is used ...\n", "INFO ; PT3S.dxAndMxHelperFcts.readDxAndMx: Model is being recalculated using C:\\3S\\SIR 3S\\SirCalc-90-14-02-12_Potsdam.fix1_x64\\SirCalc.exe\n", "INFO ; Mx.setResultsToMxsFile: Mxs: ..\\PT3S\\Examples\\WDExample9_2\\B1\\V0\\BZ1\\M-1-0-1.1.MXS reading ...\n", "INFO ; dxWithMx.__init__: Example9_2: processing dx and mx ...\n" ] } ], "source": [ "m=dxAndMxHelperFcts.readDxAndMx(dbFile=dbFile\n", " ,preventPklDump=True\n", " ,maxRecords=-1\n", " #,SirCalcExePath=r\"C:\\3S\\SIR 3S\\SirCalc-90-14-02-12_Potsdam.fix1_x64\\SirCalc.exe\"\n", " ,crs=\"EPSG:25832\" # random EPSG\n", " )" ] }, { "cell_type": "markdown", "id": "5ac81bf4", "metadata": {}, "source": [ "## SIR 3S results" ] }, { "cell_type": "markdown", "id": "bb6ec354", "metadata": {}, "source": [ "### Preparing Data" ] }, { "cell_type": "code", "execution_count": 58, "id": "525cbdd0", "metadata": {}, "outputs": [], "source": [ "dfKNOT=m.V3_KNOT" ] }, { "cell_type": "code", "execution_count": 59, "id": "cf17f907", "metadata": {}, "outputs": [], "source": [ "dfROHR=m.gdf_ROHR" ] }, { "cell_type": "markdown", "id": "1bfc23fd", "metadata": {}, "source": [ "#### TTR" ] }, { "cell_type": "code", "execution_count": 60, "id": "bcd9442f", "metadata": {}, "outputs": [], "source": [ "# Build lookup Series from dfKNOT\n", "lookup_TTR = dfKNOT.set_index('pk')['TTR']\n" ] }, { "cell_type": "code", "execution_count": 61, "id": "5351a31d", "metadata": {}, "outputs": [], "source": [ "# Map fkKI and fkKK to TTR\n", "dfROHR['TTR_KI'] = dfROHR['fkKI'].map(lookup_TTR)\n", "dfROHR['TTR_KK'] = dfROHR['fkKK'].map(lookup_TTR)" ] }, { "cell_type": "markdown", "id": "ae27f13d", "metadata": {}, "source": [ "#### Node coords" ] }, { "cell_type": "code", "execution_count": 62, "id": "448ef6c9", "metadata": {}, "outputs": [], "source": [ "lookup_XKOR = dfKNOT.set_index('pk')['XKOR']\n", "lookup_YKOR = dfKNOT.set_index('pk')['YKOR']" ] }, { "cell_type": "code", "execution_count": 63, "id": "e98db88d", "metadata": {}, "outputs": [], "source": [ "# Map fkKI and fkKK to XKOR\n", "dfROHR['XKOR_KI'] = dfROHR['fkKI'].map(lookup_XKOR)\n", "dfROHR['XKOR_KK'] = dfROHR['fkKK'].map(lookup_XKOR)" ] }, { "cell_type": "code", "execution_count": 64, "id": "b260a11c", "metadata": {}, "outputs": [], "source": [ "# Map fkKI and fkKK to YKOR\n", "dfROHR['YKOR_KI'] = dfROHR['fkKI'].map(lookup_YKOR)\n", "dfROHR['YKOR_KK'] = dfROHR['fkKK'].map(lookup_YKOR)" ] }, { "cell_type": "markdown", "id": "b72f059a", "metadata": {}, "source": [ "#### KVR" ] }, { "cell_type": "code", "execution_count": 65, "id": "d8aa4b0f", "metadata": {}, "outputs": [], "source": [ "dfROHR['KVR_KI'] = 1\n", "dfROHR['KVR_KK'] = 1" ] }, { "cell_type": "markdown", "id": "3c9c67df", "metadata": {}, "source": [ "#### dt" ] }, { "cell_type": "code", "execution_count": 66, "id": "c45544c8", "metadata": {}, "outputs": [], "source": [ "dt_abs=('STAT',\n", " 'ROHR~*~*~*~DTTR',\n", " Timestamp('2025-06-05 13:27:46'),\n", " Timestamp('2025-06-05 13:27:46'))" ] }, { "cell_type": "code", "execution_count": 67, "id": "cd01fae8", "metadata": {}, "outputs": [], "source": [ "dfROHR=dfROHR.rename(columns={dt_abs: 'dt_abs'})" ] }, { "cell_type": "code", "execution_count": 68, "id": "10057b10", "metadata": {}, "outputs": [], "source": [ "dfROHR['dt_abs']=dfROHR['dt_abs']*3600" ] }, { "cell_type": "markdown", "id": "0735e821", "metadata": {}, "source": [ "#### v" ] }, { "cell_type": "code", "execution_count": 69, "id": "79e8f5dd", "metadata": {}, "outputs": [], "source": [ "v=('STAT',\n", " 'ROHR~*~*~*~VAV',\n", " Timestamp('2025-06-05 13:27:46'),\n", " Timestamp('2025-06-05 13:27:46'))" ] }, { "cell_type": "code", "execution_count": 70, "id": "9c48fb8e", "metadata": {}, "outputs": [], "source": [ "dfROHR=dfROHR.rename(columns={v:'v'})" ] }, { "cell_type": "code", "execution_count": 71, "id": "5b5bddec", "metadata": {}, "outputs": [], "source": [ "dfROHR['dt']=dfROHR['L']/dfROHR['v']" ] }, { "cell_type": "markdown", "id": "ccf36fc1", "metadata": {}, "source": [ "### Plotting" ] }, { "cell_type": "code", "execution_count": 72, "id": "233da37b", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABK8AAAOsCAYAAACMN5XEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACVHUlEQVR4nOzdd3RUdd7H8c/MpCckIUASei+hC0HBRYpYEGkKiGtUcAVlQcVV1q7EZdXlsYIuiw2QZkFYREFUkCqwC1IEkSoQCCQ0SUhInbnPH5hZQgKkTLmTvF/nzDlk5t4734lrlrz93XsthmEYAgAAAAAAAEzI6u0BAAAAAAAAgEshXgEAAAAAAMC0iFcAAAAAAAAwLeIVAAAAAAAATIt4BQAAAAAAANMiXgEAAAAAAMC0iFcAAAAAAAAwLeIVAAAAAAAATIt4BQAAAAAAANMiXgEAcJEZM2bIYrEU+xg3bpxzuwYNGmj48OFleo/hw4erQYMGJdrWYrEoMTGxTO/jDYmJiZf8/l346NGjR4m3k85/zy58PiAgQI0bN9a4ceOUnp5eaIaVK1cW2nbTpk3O14YPH66wsLASfZbIyEjnMR566CGXfY8AAABQcn7eHgAAALOaPn26WrRoUei5WrVqueTYzz//vMaOHeuSY5nNiBEj1Lt3b+fXx44d0+23366HH35Yd911l/P53NxcBQQEXHG78PBw55+Dg4P1/fffS5LOnDmjzz//XK+//rp++uknffvtt0Vm+ec//6kOHTooLi6uTJ9l2bJlys/PV5cuXcq0PwAAAMqPeAUAwCW0bt1a8fHxbjl248aN3XJcM6hTp47q1Knj/PrgwYOSpHr16qlz586X3K8k21mt1kKv9e7dW7/++qu+++47HThwQA0bNiy0fcuWLS/7nlfirn/+AAAAKDlOGwQAwEUKTjcsiDAFCk5hW7lypfO54k4bTE9P18iRI1WtWjWFhYWpd+/e2rNnT4neOzs7W48//rjat2+viIgIRUVFqUuXLvriiy+KbHvmzBndf//9ioqKUlhYmG699Vb9+uuvxZ6euHfvXt11112Kjo5WYGCg4uLi9M9//rNEM3lKQWBKTU0t1X779u1Tnz59FBYWprp16+rxxx9XTk6OO0YEAABAObDyCgCAS7Db7crPzy/0nJ+fe/6v0zAMDRw4UOvWrdMLL7ygTp066YcfftAtt9xSov1zcnJ0+vRpjRs3TrVr11Zubq6WLVum22+/XdOnT9e9994rSXI4HOrXr582bdqkxMREdejQQevXry90ml+BnTt36tprr1W9evX0+uuvKzY2Vt98840eeeQRnTx5UuPHj3fp96CsDhw4ID8/PzVq1KjE++Tl5al///66//779fjjj2v16tWaMGGCIiIi9MILL7hxWgAAAJQW8QoAgEso7nSzvLw8twSsb775RitWrNCkSZP0yCOPSJJuvPFGBQQE6Nlnn73i/hEREZo+fbrza7vdrl69eum3337TW2+95YxXS5cu1dq1a/Wvf/1Lo0aNKvQ+Tz/9dKFjPvbYY6pSpYrWrl3rvO7UjTfeqJycHP3jH//QI488oqpVq7rk85dGQVBMS0vTvHnztGDBAj311FOKjo4u8TFyc3P14osvasiQIZKkXr16adOmTZo7dy7xCgAAwGQ4bRAAgEuYOXOmNm7cWOjhrpVXK1askCQlJCQUev7CC5dfybx58/SHP/xBYWFh8vPzk7+/vz788EP98ssvzm1WrVolSbrjjjsK7fvHP/6x0NfZ2dlavny5brvtNoWEhCg/P9/56NOnj7Kzs7Vhw4ZSfUZXyMzMlL+/v/z9/VW9enX9+c9/1tChQ/XSSy+V6jgWi0X9+vUr9Fzbtm116NAhV44LAAAAF2DlFQAAlxAXF+exC3afOnVKfn5+qlatWqHnY2NjS7T/ggULdMcdd2jIkCH661//qtjYWPn5+elf//qXpk2bVuR9oqKiCu0fExNTZJ78/Hy9/fbbevvtt4t9z5MnT5ZoNlcKDg7W6tWrJUkpKSl6/fXX9fHHH6tt27Z66qmnSnyckJAQBQUFFXouMDBQ2dnZLp0XAAAA5Ue8AgDARQpiyMUX/S5J5KlWrZry8/N16tSpQgErJSWlRO89e/ZsNWzYUJ9++qksFovz+YtnKXif06dPFwpYF79P1apVZbPZdM8992jMmDHFvufFd/bzBKvVWigo3njjjerYsaNefPFFJSQkqG7duh6fCQAAAO7FaYMAALhIwd0Df/rpp0LPL1q06Ir79uzZU5I0Z86cQs/PnTu3RO9tsVgUEBBQKFylpKQUudtg9+7dJUmffvppoec/+eSTQl+HhISoZ8+e2rJli9q2bav4+Pgij4tXiXlDYGCg/vnPfyo7O1t///vfvT0OAAAA3ICVVwAAuEinTp3UvHlzjRs3Tvn5+apatar+/e9/a+3atVfc96abblK3bt30xBNPKDMzU/Hx8frhhx80a9asEr133759tWDBAo0ePVqDBw/W4cOHNWHCBNWsWVN79+51bte7d2/94Q9/0OOPP6709HR17NhR69ev18yZMyWdX9lUYNKkSeratauuu+46/fnPf1aDBg109uxZ7du3T19++aW+//77Un6H3KN79+7q06ePpk+frqeeesorK8IAAADgPqy8AgDARWw2m7788ku1aNFCo0aN0r333qvAwEC98847V9zXarVq0aJFSkhI0P/93/9p4MCBWrdunZYsWVKi977vvvv0j3/8Q19//bX69OmjiRMn6qmnnipywXer1aovv/xSd955p/7xj39owIABWrNmjWbPni1JioyMdG7bsmVLbd68Wa1bt9Zzzz2nm266Sffff78+//xz9erVq+TfGA+YOHGi7Ha7JkyY4O1RAAAA4GIWwzAMbw8BAAC8a+7cuUpISNAPP/yga6+91tvjlNvKlSvVs2dPLVu2TN27dy/zXSLtdrsMw5C/v7/GjBlTohAJAAAA1+K0QQAAKpmPP/5YycnJatOmjaxWqzZs2KBXX31V3bp1qxDh6kI33HCDJGnjxo1lunNktWrVlJaW5uqxAAAAUAqsvAIAoJL56quvlJiYqH379ikzM1M1a9bUwIED9fe//13h4eHeHs8lzp49q927dzu/btmypUJCQkp9nK1btyo/P1+SFB0drXr16rlsRgAAAJQM8QoAAAAAAACmxQXbAQAAAAAAYFrEKwAAAAAAAJgW8QoAAAAAAACmRbwCAAAAAACAaRGvAAAAAAAAYFrEKwAAAAAAAJgW8QoAAAAAAACmRbwCAAAAAACAaRGvAAAAAAAAYFrEKwAAAAAAAJiWn7cHAAAAAABUbHa7XXl5ed4eAxfw9/eXzWbz9hhAiRCvAAAAAABuYRiGUlJSdObMGW+PgmJERkYqNjZWFovF26MAl0W8AgAAAAC4RUG4io6OVkhISLkiSXZ2toKCglw4XeVlGIbOnTun48ePS5Jq1qzp5YmAyyNeAQAAAABczm63O8NVtWrVynWsvXv3qn379tq2bZuaNGniogkrt+DgYEnS8ePHFR0dzSmEMDUu2A4AAAAAcLmCa1yFhISU+1jz5s3TuXPnNG/evHIfC/9T8M+G65HB7IhXAAAAAAC3ccX1lD7//HNFRkbq888/d8FEKMC1ruAriFcAAAAAANP69ddftWXLFr355pvavHmzDhw44O2RAHgY8QoAAAAAYFoLFixQo0aNNGzYMDVs2FALFizw9kgAPIx4BQAAAAAwrfnz52vQoEGyWCwaNGiQ5s+f7/b3PH78uB588EHVq1dPgYGBio2N1c0336z169e7/b0BFEW8AgAAAACY0pEjR7RhwwYNGjRIkjRo0CCtX79eycnJbn3fQYMGadu2bfroo4+0Z88eLVq0SD169NDp06fd9p65ubluOzbg6yyGYRjeHgIAAAAAULFkZ2frwIEDatiwoYKCgordZtu2bfrss88ueYyff/5ZP/74ow4dOiSr1SqHw6F69eqpU6dOatmy5SX3Gzp0qNq2bVumuc+cOaOqVatq5cqV6t69e7HbJCUl6eGHH9by5ctltVrVu3dvvf3224qJiZEkDR8+XGfOnNHChQud+zz66KPaunWrVq5cKUnq0aOHWrdurYCAAM2cOVOtWrXSqlWr9PPPP+uJJ57QmjVrZBiG2rdvrxkzZqhx48aSpOnTp+v//u//dODAATVo0ECPPPKIRo8eLel8AHvsscc0f/58/fbbb4qNjdWDDz6op59+utjPUZJ/RoAZ+Hl7AAAAAABA5bR//35NnDhRdrtdnTt3VlhYWJFtxo8fL6v1/ElDVqtV48eP12effab//ve/hbbLyMjQhg0bZLPZ1LFjxzLHq7CwMIWFhWnhwoXq3LmzAgMDC71uGIYGDhyo0NBQrVq1Svn5+Ro9erSGDh3qDFMl9dFHH+nPf/6zfvjhBxmGoeTkZHXr1k09evTQ999/r/DwcP3www/Kz8+XJL3//vsaP3683nnnHV111VXasmWLRo4cqdDQUA0bNkyTJ0/WokWL9Nlnn6levXo6fPiwDh8+XKbvA2AmxCsAAAAAgFfcfvvtWrt2rf74xz/q9OnT+uc//6kOHTpcdp+RI0dq5MiRhZ7bvHmz7rzzTjVo0EAff/yxOnfuXOaZ/Pz8NGPGDI0cOVJTp05Vhw4d1L17d915551q27atli1bpp9++kkHDhxQ3bp1JUmzZs1Sq1attHHjRnXq1KnE79WkSRP93//9n/PrZ555RhEREfrkk0/k7+8vSWrWrJnz9QkTJuj111/X7bffLklq2LChdu7cqXfffVfDhg1TUlKSmjZtqq5du8pisah+/fpl/j4AZsI1rwAAAAAAXtO5c2dt3bpVV111lTp37qw333xTJb26jcPh0JtvvqnOnTurQ4cO2rp1a7nCVYFBgwbp6NGjWrRokW6++WatXLlSHTp00IwZM/TLL7+obt26znAlSS1btlRkZKR++eWXUr1PfHx8oa+3bt2q6667zhmuLnTixAkdPnxY999/v3N1WFhYmP7+979r//79ks6frrh161Y1b95cjzzyiL799tsyfHrAfIhXAAAAAACvioiI0Mcff6ypU6fqueee06233qrjx49fdp/jx4+rb9++eu655/Tuu+/q448/VkREhMtmCgoK0o033qgXXnhB69at0/DhwzV+/HgZhiGLxVJk+wuft1qtRQJcXl5ekX1CQ0MLfR0cHHzJeRwOh6Tzpw5u3brV+dixY4c2bNggSerQoYMOHDigCRMmKCsrS3fccYcGDx5cug8OmBDxCgAAAADgdRaLRX/605+0efNmHTt2TO3bt9fZs2eL3fbs2bNq3769jh07ps2bN+u+++4rNii5UsuWLZWZmamWLVsqKSmp0LWkdu7cqbS0NMXFxUmSatSooWPHjhXaf+vWrVd8j7Zt22rNmjXFhq6YmBjVrl1bv/76q5o0aVLo0bBhQ+d24eHhGjp0qN5//319+umnmj9/vlvvkgh4AvEKAAAAAGAaBae85ebmXvIOeEFBQcrJydHYsWPVvHlzl77/qVOndP3112v27NnOa1vNmzdP//d//6cBAwbohhtuUNu2bZWQkKDNmzfrv//9r+699151797deRrg9ddfr02bNmnmzJnau3evxo8frx07dlzxvR966CGlp6frzjvv1KZNm7R3717NmjVLu3fvliQlJibqlVde0aRJk7Rnzx5t375d06dP1xtvvCFJevPNN/XJJ59o165d2rNnj+bNm6fY2FhFRka69HsEeBrxCgAAAABgKvPnz9eAAQOKvfaTJPn7+2vAgAGaP3++y987LCxM11xzjd58801169ZNrVu31vPPP6+RI0fqnXfekcVi0cKFC1W1alV169ZNN9xwgxo1aqRPP/3UeYybb75Zzz//vJ544gl16tRJZ8+e1b333nvF965WrZq+//57ZWRkqHv37urYsaPef/995/dhxIgR+uCDDzRjxgy1adNG3bt314wZM5wrr8LCwjRx4kTFx8erU6dOOnjwoJYsWeK8WyPgqyxGSa+EBwAAAABACWVnZ+vAgQNq2LDhJVdQFSc9PV01atTQv//9b/Xp00eSNGfOHE2YMEHPP/+8EhISJEmLFy/W7bffrhMnTig8PNwtn6GiK+s/I8DTyK8AAAAAANP46quvFBQUpF69euns2bMaNmyYhg8frg4dOmj48OEaNmyYzp49qxtuuEFBQUFavHixt0cG4GbEKwAAAACAacyfP1/9+vXT9u3b1aFDB61du1Y//PCD5s6dq7Vr12rNmjXq0KGDduzYob59+7rl1EEA5kK8AgAAAACYQmZmpr7++mulpKTo2muvVadOnbRlyxZdffXVkqRrrrlGW7ZsUadOndSlSxelpKTo66+/1rlz57w8OQB3Il4BAAAAAExh6dKlysrK0oYNG/T+++9rzpw5Ra5nFRERoTlz5ui9997Tf/7zH507d05Lly710sQAPIF4BQAAAABwm9LcI+zgwYO6+uqrtXnzZg0bNkwWi6XY7SwWi4YPH64ff/xRV199tQ4cOOCqcSsV7t8GX8HdBgEAAAAALme327Vnzx5FR0erWrVq3h4HxTh16pSOHz+uZs2ayWazeXsc4JL8vD0AAAAAAKDisdlsioyM1PHjxyVJISEhl1xJBc8yDEPnzp3T8ePHFRkZSbiC6bHyCgAAAADgFoZhKCUlRWfOnPH2KChGZGSkYmNjiYowPeIVAAAAAMCt7Ha78vLyvD0GLuDv78+KK/gM4hUAAAAAAABMi7sNAgAAAAAAwLSIVwAAAAAAADAt4hUAAAAAAABMi3gFAAAAAAAA0yJeAQAAAAAAwLSIVwAAAAAAADAt4hUAAAAAAABMi3gFAAAAAAAA0yJeAQAAAAAAwLSIVwAAAAAAADAt4hUAAAAAAABMi3gFAAAAAAAA0yJeAQAAAAAAwLSIVwAAAAAAADAt4hUAAAAAAABMi3gFAAAAAAAA0yJeAQAAAAAAwLSIVwAAAAAAADAt4hUAAAAAAABMi3gFAAAAAAAA0yJeAQAAAAAAwLSIVwAAAAAAADAt4hUAAAAAAABMi3gFAAAAAAAA0yJeAQAAAAAAwLSIVwAAAAAAADAt4hUAAAAAAABMi3gFAAAAAAAA0yJeAQAAAAAAwLSIVwAAAAAAADAt4hUAAAAAAABMy8/bAwAAAAAAAJhNdna2cnNzvT1GEQEBAQoKCvL2GB5FvAIAAAAAALhAdna2GtYPU8pxu7dHKSI2NlYHDhyoVAGLeAUAAAAAAHCB3NxcpRy369CPDRRexTxXXEo/61D9jgeVm5tLvAIAAAAAAKjswqtYFV7F5u0xKj3iFQAAAAAAQDEcMuSQw9tjODlkeHsErzDP2jcAAAAAAADgIsQrAAAAAAAAmBanDQIAAAAAABTDbjhkN9GZenbDPKcwehIrrwAAAAAAAGBaxCsAAAAAAACYFqcNAgAAAAAAFOP83QbNc96gmWbxJFZeAQAAAAAAwLSIVwAAAAAAADAtThsEAAAAAAAohkMOmen+fuaaxnNYeQUAAAAAAADTIl4BAAAAAADAtDhtEAAAAAAAoBh2w5DdMM8d/sw0iyex8goAAAAAAACmRbwCAAAAAACAaXHaIAAAAAAAQDEcMuSQeU7VM9MsnsTKKwAAAAAAAJgW8QoAAAAAAACmxWmDAAAAAAAAxXDIkN1Ep+px2iAAAAAAAABgMsQrAAAAAAAAmBanDQIAAAAAABSDuw2aAyuvAAAAAAAAYFrEKwAAAAAAAJgWpw0CAAAAAAAUw24YshvmOVXPTLN4EiuvAAAAAAAAYFrEKwAAAAAAAJgWpw0CAAAAAAAUw/H7wyzMNIsnsfIKAAAAAAAApkW8AgAAAAAAgGlx2iAAAAAAAEAx7DJkl3nu8GemWTyJlVcAAAAAAAAwLeIVAAAAAAAATIvTBgEAAAAAAIphN84/zMJMs3gSK68AAAAAAABgWsQrAAAAAAAAmBanDQIAAAAAABTD8fvDLMw0iyex8goAAAAAAACmRbwCAAAAAACAaXHaIAAAAAAAQDEcssgui7fHcHKYaBZPYuUVAAAAAAAATIt4BQAAAAAAANPitEEAAAAAAIBiOIzzD7Mw0yyexMorAAAAAAAAmBbxCgAAAAAAAKbFaYMAAAAAAADFsJvsboNmmsWTWHkFAAAAAAAA0yJeAQAAAAAAwLQ4bRAAAAAAAKAYnDZoDqy8AgAAAAAAgGkRrwAAAAAAAGBanDYIAAAAAABQDIdhkcMwz6l6ZprFk1h5BQAAAAAAANMiXgEAAAAAAMC0OG0QAAAAAACgGNxt0BxYeQUAAAAAAADTIl4BAAAAAADAtDhtEAAAAAAAoBh2WWU30bofu7cH8BLz/BMAAAAAAAAALkK8AgAAAAAAgGlx2iAAAAAAAEAxDMMih2GeO/wZJprFk1h5BQAAAAAAANMiXgEAAAAAAMC0OG0QAAAAAACgGHZZZJd5TtUz0yyexMorAAAAAAAAmBbxCgAAAAAAAKbFaYMAAAAAAADFsBtW2Q3zrPuxG96ewDvM808AAAAAAAAAuAjxCgAAAAAAAKbFaYMAAAAAAADFcMgih4nW/ThUOc8bNM8/AQAAAAAAAOAixCsAAAAAAACYFqcNAgAAAAAAFMMui+yyeHsMJzPN4kmsvAIAAAAAAIBpEa8AAAAAAABgWpw2CAAAAAAAUAy7YZXdMM+6H7vB3QYBAAAAAAAAUyFeAQAAAAAAwLQ4bRAAAAAAAKAYDlnkMNEd/sw0iyex8goAAAAAAACmRbwCAAAAAACAaXHaIAAAAAAAQDEcsspuonU/DnG3QQAAAAAAAMBUiFcAAAAAAAAwLU4bBAAAAAAAKIbdsMpumGfdj93gtEEAAAAAAADAVIhXAAAAAAAAMC1OGwQAAAAAACiGQ1Y5TLTuh7sNAgAAAAAAACZDvAIAAAAAAIBpcdogAAAAAABAMeyGRXbD4u0xnMw0iyex8goAAAAAAACmRbwCAAAAAACAaXHaIAAAAAAAQDHssspuonU/du42CAAAAAAAAJgL8QoAAAAAAACmxWmDAAAAAAAAxXAYVjkM86z7cRicNggAAAAAAACYCvEKAAAAAAAApsVpgwAAAAAAAMXgboPmYJ5/AgAAAAAAAMBFiFcAAAAAAAAwLeIVAAAAAABAMRyS7IbFNA9HKed/5ZVX1KlTJ1WpUkXR0dEaOHCgdu/efdl9Vq5cKYvFUuSxa9euMn8fy4t4BQAAAAAAUAGtWrVKY8aM0YYNG/Tdd98pPz9fN910kzIzM6+47+7du3Xs2DHno2nTph6YuHhcsB0AAAAAAKACWrp0aaGvp0+frujoaP3444/q1q3bZfeNjo5WZGSkG6crOVZeAQAAAAAAFMMhq+kekpSenl7okZOTU6LPk5aWJkmKioq64rZXXXWVatasqV69emnFihVl/ya6APEKAAAAAADAh9StW1cRERHOxyuvvHLFfQzD0GOPPaauXbuqdevWl9yuZs2aeu+99zR//nwtWLBAzZs3V69evbR69WpXfoRS4bRBAAAAAAAAH3L48GGFh4c7vw4MDLziPg899JB++uknrV279rLbNW/eXM2bN3d+3aVLFx0+fFivvfbaFU81dBfiFQAAAAAAQDHshlV2wzwnrRXMEh4eXiheXcnDDz+sRYsWafXq1apTp06p37dz586aPXt2qfdzFeIVAAAAAABABWQYhh5++GH9+9//1sqVK9WwYcMyHWfLli2qWbOmi6crOeIVAAAAAABABTRmzBjNnTtXX3zxhapUqaKUlBRJUkREhIKDgyVJTz/9tJKTkzVz5kxJ0ltvvaUGDRqoVatWys3N1ezZszV//nzNnz/fa5+DeAUAAAAAAFAMhyxyyOLtMZxKO8u//vUvSVKPHj0KPT99+nQNHz5cknTs2DElJSU5X8vNzdW4ceOUnJys4OBgtWrVSosXL1afPn3KNXt5WAzDMLz27gAAAAAAACaTnp6uiIgITf6xs4LDzLPuJysjX4903KC0tLRSXfPK15nnqmMAAAAAAADARcyTDwEAAAAAAEzErHcbrGwq56cGAAAAAACATyBeAQAAAAAAwLQ4bRAAAAAAAKAYdlllN9G6HzPN4kmV81MDAAAAAADAJxCvAAAAAAAAYFqcNggAAAAAAFAMh2GRw7B4ewwnM83iSay8AgAAAAAAgGkRrwAAAAAAAGBanDYIAAAAAABQDIfJ7jboMNEsnlQ5PzUAAAAAAAB8AvEKAAAAAAAApsVpgwAAAAAAAMVwGFY5DPOs+zHTLJ5UOT81AAAAAAAAfALxCgAAAAAAAKbFaYMAAAAAAADFsMsiuyzeHsPJTLN4EiuvAAAAAAAAYFrEKwAAAAAAAJgWpw0CAAAAAAAUg7sNmkPl/NQAAAAAAADwCcQrAAAAAAAAmBbxCgAAAAAAD8rOztbAgQPVrFkztW/fXr1799bBgweLbGcYhv7617+qVatWatu2rXr27Kl9+/Y5X3/ttdfUunVrtW/fXp07d9bGjRslSQcPHlT16tU99XEqNLv+d8dBczwqJ+IVAAAAAAAulpWVpcOHD+vo0aOy24smhwceeEC7d+/W1q1b1bdvXz3wwANFtlm0aJFWr16trVu36qefflKvXr30zDPPSJK2bdumt99+Wxs2bNDWrVv10EMPacyYMW7/XIA3cMF2AAAAAABc4ODB/Vrx3T9lc+xSSMAx1Yg6J4fDopUnI5Rn1FFASCf1HTBGVapUUZ8+fZz7de7cWW+99Vaxx8zJyVF2drb8/PyUnp6uOnXqOF/Ly8tTZmamwsLCdObMmUKvSdILL7ygxYsXKy0tTZMnTy70noAvIV4BAAAAAFAOOTk5mvPRM6pd9Vvdc2u2rFbLBa8akn6T9JvOndumLz7+QuEx96lv/5GyWM5vN3nyZPXr16/Icfv166eVK1cqNjZWVapUUe3atbVq1SpJUrt27fTYY4+pYcOGioqKUmBgoFavXu3c99SpU+rYsaP+9re/aenSpRo7dizxqgy426A5VM5PDQAAAACAC5w4cVzvTR6oO274Qjdel3NRuCosJMSqP/Y/pVa1XtO/Jo+Sw+HQyy+/rL179+qll14qsv3mzZu1a9cuJScn6+jRo+rVq5ceeughSdKhQ4e0aNEi7d+/X0eOHNFf/vIXJSQkOPcNDQ3VgAEDJEldunTR/v37XfzJAc9h5RUAAAAAAGWQnZ2tj6ffq9F375fVWvK1IQ3qSnfctFxDB3fXgaQsLVu2TCEhIUW2mzFjhnr27KnIyEhJ0rBhw5yrp+bNm6fWrVurZs2akqT77rtPjzzyiPP6WkFBQc7j2Gy2Yq+7BfgKVl4BAAAAAFAGc2c+qz8N3nfZ1VaX8tGnafp5x0YlvjDWGacu1qhRIy1fvlx5eXmSpC+//FKtW7d2vrZ27VplZGQ4X4uLi5PNZivbh0Gx7IbVdI/KiJVXAAAAAACU0oEDe1Wn6jcKCSl9TDhyNE/jXjypRvX99efRo/XcC68rMDBQ//nPfzRixAj1799f/fv315gxY/TLL7+oTZs2CggIUM2aNfXuu+9Kkm677TZt3LhR8fHxCgwMVJUqVTR79mxXf0zAFCyGYRjeHgIAAAAAAF8y44PHdXefRWVadXWhXw8ZOpL5unpc399Fk8EV0tPTFRERoafX91ZQmL+3x3HKzsjTK12WKi0tTeHh4d4ex2NYeQUAAAAAQAnk5+crIyNDGRkZysn4sdzhSpIa1bdow9ffSyJemZEhixwq/z9nVzFMNIsnEa8AAAAAACjGhbHq7NmzOnfunKTzF2oPDznhujdyJLvuWEAFRLwCAAAAAECXjlUXO3PmjGKjc+Sqe6BZjHSXHAeoqIhXAAAAAIBKqaSx6mJWq1UOhytP36qcp4L5ArPd4c9Ms3gS8QoAAAAAUCmUNVZdrFq1atq5MVRS2fa/mGGp7pLjABUV8QoAAAAAUCG5KlZdzGazKTO7uqSkch/LMAwZ1trlHwqowIhXAAAAAIAKwV2xqjjZ9jhlZR1UcHD5TuNa/6OfOnW520VTwdUchkUOwzyndZppFk8iXgEAAAAAfJInY9XF4q8ZrM8Wr9GwweV7zx2/ttGovm1cNBVQMRGvAAAAAAA+wZux6mJhYWE657hVBw5/poZ1y7Ya5uuVYbrx1hddPBlQ8RCvAAAAAACmZKZYVZwuXQfp88X7df/gTYqqWrrTB7fs8JdC/qzGjePcNB1cwS6r7DLPHf7MNIsnEa8AAAAAAKZg9lhltVoVFhamsLAwValSRaGhoWrXbo6mvfuormm5TK1b2Et0nK9Xhkkhf9at/Ue6eWKgYiBeAQAAAAC8whdjlcVS+BRBm82mkaPf1srvF+jDeVN1/TUH1LBe0dMIDcPQhs3+2r6/tW7ok6gmTVp66mMAPo94BQAAAADwiIoQqy6lx/W3q3vP27Ty+0Vav+R7GY4jsuqsJKscqibZ6ii+c4JG3drWvR8CLsXdBs2BeAUAAAAAcIuKHKuKY7FY1LPXAEkDXDckAOIVAAAAAMA1KlusAuAZxCsAAAAAQJkQq1DROWSVw0R3+DPTLJ5EvAIAAAAAlAixCoA3EK8AAAAAAMUiVgEwA+IVAAAAAEASsQq4mN2wyG6iO/yZaRZPIl4BAAAAQCVFrALgC4hXAAAAAFBJEKsA+CLiFQAAAABUUMQqoHwchkUOE52qZ6ZZPIl4BQAAAAAVBLEKQEVEvAIAAAAAH0WsAlAZEK8AAAAAwEcQqwDPMgyrHIbV22M4GSaaxZOIVwAAAABgUsQqACBeAQAAAIBpEKsAoCjiFQAAAAB4CbEKMDe7LLLLPP+bN9MsnkS8AgAAAAAPIVYBQOkRrwAAAADATYhVAFB+xCsAAAAAcBFiFVCxOAzJYZjn3xGH4e0JvIN4BQAAAABlRKwCAPcjXgEAAABACRGrAMDziFcAAAAAcAnEKqBycxhWOQyrt8dwMtMsnkS8AgAAAIDfEasAwHyIVwAAAAAqLWIVAJgf8QoAAABApUGsAlAaDlnkkHn+HTTTLJ5EvAIAAADgU/bu3athw4bp5MmTioyM1IwZM9SyZctit83Pz9fJkyfVrVs3BQQE6KOPPnK+NnPmTH311VcyDEP169fX+PHjVaVKlSLHSExMVFxcnIYOHeryz0KsAoArI14BAAAA8CkPPvigHnjgAQ0fPlyff/657r//fq1fv15S8Sur3nzzTcXFxWnv3r3OY2zYsEGLFy/W9OnTFRoaqvfee09TpkzRk08+6dbZiVUAUHrEKwAAAAA+4/jx49q8ebO+/fZbSdKAAQM0ZswYrV+/XpGRkUVOA9yyZYuSkpKUkJCgSZMmOZ/fu3evrrrqKoWGhkqSrrvuOo0aNeqS8erAgQMaPXq0UlJS1LhxY7388svy9/e/4rzEKsC32Q2L7IZ5/p010yyeRLwCAAAA4DMOHDig2NhYpaSkOFdWVa9eXTt27FCHDh0KbZuVlaXXX39db7zxhpKSkgq9FhcXpwULFujUqVOKiorSkiVLlJmZqbS0NEVERBR53z179mjKlCny9/fXyJEjtXz5cvXu3bvIdsQqAHA94hUAAAAA07r4NMC9e/cqLy9PqampV9x30qRJGjJkiKKjo4vEq/j4eCUkJOjRRx+VzWZTz549JUl+fsX/itSzZ08FBQVJklq1aqUjR45IIlYBgCcQrwAAAACYxpXuBhgTE6PU1FTl5+fLz89PhmEoNTVVsbGxRY61detW/fDDD/rggw+Um5ur9PR03XHHHfrss88kSYMHD9bgwYMlSdu3b1dMTIzzNMKLBQQESDofq4KDgxUSEqLmzZsTq4AKzmFY5TCs3h7DyUyzeBLxCgAAAIDXXClWXSwqKkrNmzfX119/rX79+mn58uWqWbOmatWqVWTbTz75xPnnTZs2adKkSZo1a5bzuZMnT6p69erKzs7W1KlTdc899xQ5htVqlb+/vyIiIpyxqmrVqs7VVgAA9yNeAQAAAPCY0saq4jzzzDN68cUXnXcKTExMdL42YcIEdevWTd27d7/iccaMGSPDMJSXl6c+ffpo6NChxZ4GGB4eroiICGIVAHiJxTAMw9tDAAAAAKiYXBGr3IlrVgEoTnp6uiIiInTH8nsUEBrg7XGccjNz9VmvWUpLS1N4eLi3x/EYVl4BAAAAcBliFQDA1YhXAAAAAMqMWAUAcDfiFQAAAIASI1YBqEwMWeSQeX6GGCaaxZOIVwAAAAAuiVgFAPA24hUAAAAAJ2IVAMBsiFcAAABAJUasAoBLcxgWOQzz/Mwx0yyeRLwCAAAAKhFiFQDA1xCvAAAAgAqMWAUA8HXEKwAAAKACIVYBgOs4DKschtXbYziZaRZPIl4BAAAAPoxYBQCo6IhXAAAAgA8hVgEAKhviFQAAAGBixCoA8B7uNmgOxCsAAADARIhVAAAURrwCAAAAvIhYBQDA5RGvAAAAAA8iVgGA73DIIofM8zPQTLN4EvEKAAAAcCNiFQAA5UO8AgAAAFyIWAUAgGsRrwAAAIByIFYBQMXF3QbNgXgFAAAAlAKxCgAAzyJeAQAAAJdBrAIAwLuIVwAAAMAFiFUAgAKcNmgOxCsAAABUasQqAADMjXgFAACASoVYBQCAb7F6ewAAgOs88sgjatCggSwWi3bs2FHsNjNnzlT79u2dj+rVq+v22293vv7VV1+pRYsWatKkiQYNGqSMjAxJ0sGDB1W9enWPfA4AKJCdna2BAweqWbNmat++vXr37q2DBw8W2W79+vXOn2utWrXSgw8+qJycHEnnY9Xf/vY3NW/eXI0bN9aNN96orVu3KjU1Vfv27VOvXr08/KkKs1qtCg8PV61atdS8eXO1b99eTZs2Vc2aNRUWFka4AgAvKjht0EyPyoiVVwDgA+x2u5KTk7Xyhx+09dc9ync4FOofoG4d4nV1x3hFRkbKZrNp8ODBeuKJJ9S1a9dLHuvee+/Vvffe6/y6TZs2SkhIkCRlZGTo/vvv16pVq9SiRQs99NBDeumll/TKK6+4/TMCqJxOnDihNf9ZoSMnDkiSqoZV1x869lTDhg2d0eaBBx7QLbfcIovFonfeeUcPPPCAvv3220LHadeunTZu3Ch/f3/l5uZq0KBBmjhxooYMGaLvv/9eM2fO1LRp0xQaGqr33ntPU6ZM0ZNPPunxzyuxsgoAgNIiXgGAiWVlZWnJsu80a+V32m0/p7O1q8tWq6osFouMfLtm/3epanz1mdqEVtVTw0bouuuuK9UvQP/973+Vmpqq/v37S5K+/vprxcfHq0WLFpKk0aNHq0+fPoXi1QsvvKDFixcrLS1NkydPVp8+fVz7oQFUeIZhaOHX87Ru99dKCzmo6q38FdowQJJ06ly+1v0wW5bPq6l1dBeNTHik0M+Zzp0766233ip0vPz8fOXm5ur06dM6e/asfvvtN50+fVoZGRk6d+6c9u7dq6uuukqhoaGSpOuuu06jRo0qFK+mTp2qtWvXKiMjQ+PGjbvsfwQoLWIVAADlQ7wCABPKysrS4cOH9dKH72p9QJ5y29SRVPiHtsXPJludWJ2uE6uVDoe2Tn1NdzZtp3EPjCrx+3z44Ye655575O/vL0lKSkpS/fr1na83aNBAycnJcjgckqRTp06pY8eO+tvf/qalS5dq7NixxCsApXL8RKomTntG1vZJirwpUJEKLfR6QIif6nTwk5StlMzvNPofa/RA36fV6aprJEmTJ0/WrbfeqjNnzhS5ZtXRo0c1btw4HT58WF27dnWeEh0XF6cFCxbo1KlTioqK0pIlS5SZmam0tDRJUlpamlq0aKFRo0Zp3bp1eu2118oVr4hVAFBxmO1UPTPN4knEKwAwkaysLB07dkwnTpzQ+BnvaWfberIGB11xP4vVqrT2TfXB0UM68eo/SvRe586d06effqp169YVPtZlfsEKDQ3VgAEDJEldunTR/v37S/ReACBJh5OT9LePHlK9fnZZrYFX3D4w1E8Nbs/XB6ue1+HkEfrPmh/1008/6Z///GexP39q1aqluXPn6ty5c3r++ef1/fff6+abb1Z8fLwSEhL06KOPymazqWfPnpIkP7/zfxUODg5Wjx49JElt27ZVcnJyqT4XsQoAAPciXgGACRREq99++02S9OZnc7SzbX1Zg6/8y92F7LVqaGHyCaWfPSvDMC677eeff664uDi1bNnS+Vy9evX0/fffO78+ePCgateuLav1/P09goL+F9JsNpvsdnup5gNQeeXl5eml6Y+p/kB7qcNOve4BeuWpZ3Vml/T+++8X+llUnJCQEN10001aunSpbr75ZknS4MGDNXjwYEnS9u3bFRMTo9DQUKWlpSkgIMC5r9VqveLPNmIVAACeRbwCAC+6OFpJ0tofN2ljpF+pw1UBR+0aysjL1eHDh9WmTZtLbjdt2jTdf//9hZ7r3bu3xowZo127dqlFixaaMmWK7rzzzjLNAQAXevPDl1TjxrOyWPxLve8PH/2qo/uPq0ffrgoLCyt2myNHjig2NlZ+fn7Ky8vTihUr1KRJE+frJ0+eVPXq1ZWdna2pU6fqnnvuKfH7E6sAoPIyJDlknp/5l//P0xUX8QoAvKC4aFXgy51bZG/fsEzHPTVrobK27JQ985wG33GHqv9+bZfx48erR48ezlNlDh8+rI0bN2rixInasWNHoWM8//zzuuWWW2S329W0aVO99NJL2rFjh5KTk2W3253bF1xj5uL9YS6HDh3Ss88+qzNnzqhKlSr6+9//rsaNGxfZbuPGjRo9enSha57Nnj1bQUFB2rNnj1566SWdPn1afn5+ateunZ555plCq1UKPPvss2rVqpXuuusut34u+JZz585pV+ZaNQ678mnQF0tLydLXr/6iqnVC9O0Xq7Vm/m0KD4/QRx99pAkTJqhbt27q3r27Nm3apLlz5zpXhcbHx2vEiBHO44wZM0aGYSgvL099+vTR0KFDL/u+4eHhxCoAAEzCYlzpvBIAgMtcLlpJ0q8HD+rJrSvlaFyn3O8V/eMeTRn2Z37hquRGjRqlW2+9Vf369dOyZcs0Z84cTZ8+vch2mzZt0qRJkzRr1qwiryUlJSknJ0dNmzaV3W7Xc889p6ZNm+pPf/pTkW0TExMVFxd3xTCAymXRss+kXj8pINhW7mOlzK+q4bc+Wv6hLsDKKgDAxdLT0xUREaEbljwov9CynRHhDvmZOVrW512lpaUpPDzc2+N4DCuvAMADrhStCqz5aYvsDWq6ZGHyifBApaamKjY21gVHgy86ffq0du3apXfeeUeS1KtXL7366qs6evSoatWqVeLj1KtXz/lnm82mli1b6uDBg5fc/sCBAxo9erRSUlLUuHFjvfzyy847WqJyOmM/qmgXhCtJyvI/Xe5jEKsAACXF3QbNgXgFAG5U0mhVIDXnnCy2Ki55b3udGG3cuUP9iFeVVmpqqmrUqOG8o5rFYlFMTIxSUlKKjVeHDh1SQkKCbDab+vXrpyFDhhTZJisrSwsXLtTDDz98yffds2ePpkyZIn9/f40cOVLLly9X7969XffB4HOyLGkuO5YRlqmMjIxLXvuqOMQqAAB8G/EKANygtNGqQL4LL8FoCQpUemqmy44H31TSX9BbtGihJUuWKCwsTKmpqRo7dqwiIyN14403OrfJz8/X008/rc6dO6tHjx6XPFbPnj2dd4Nr1aqVjhw5Uq7PAN/nsNolF13s1i/MUFZW1hXjlb+/v0JDQxUVFaXIyEhiFQAAPox4BQAuVNZoVcDPhXcyMXLzFHKF28mjYouJiVFqaqry8/Pl5+cnwzAueSrphSEgJiZGN998s7Zs2eKMV/n5+XrqqadUvXp1jRs37rLve+GF3Asuno3KzWrYJDlccix7lsUZRy8nLy9PZ86c0ZkzZxQYGKgqVao4V14Vd7MBAACKw2mD5kC8AgAXKG+0KlDdP0iGwyGL1VrumSzJx9WxQ69yHwe+KyoqSs2bN9fXX3+tfv36afny5apZs2axpwyePHlSUVFRslqtyszM1Jo1azRgwABJ/1txFR4ermeffZYVLCi1QEcVSa45ddBIC1aVKqU7vTonJ0c5OTk6efLk+XmIWQAA+BTiFQCUg6uiVYFr4lpp8f5NUt3yX6eq2m+Zqlun/HcthG975pln9OKLL2r69OkKDQ1VYmKi87UJEyaoW7du6t69u5YvX6758+c7V0r16tVL/fv3lyR99913WrFihZo2baqEhARJUrt27fTkk0964yPBB1VRtPLzfpOff/nDfFBe1XIfg5gFAIBvsRiG4boLrABAJeHqaHWhv3z0rpI6NC7XMQyHQ9ftOq6/DL3bRVMBQNn9duY3ffLzy2rYK6RcxzlzJEd1D9yiP3Tq7qLJikfMAgCkp6crIiJC3b4cLb/QQG+P45SfmaPV/aYoLS1N4eHh3h7HY1h5BQCl4M5oVeDGRi30YWqKFFOtzMeo8vMB3X3zIAUGmuf/aAFUXlUjqyr4VH3l56bIL8BW5uOcXBOoOwZc58LJisfKLAAAzIV4BQAl4IloVaDPdd21Yfq72lEtUha/0v+SZ5w6owGxjXTTDTfK6oJrZwFAeW3btk1Db7xf738xQc2GlC1eJa3N0s3t7/fKzzViFgBUXlyw3Rz4rQYALiMrK0u//vqrdu7c6ZFwVeCpofeo3n93ycgv5V3afktTt9QcvfDIXwhXAEwlODhYfdoM177FOaXe99iWHDWz36CmDZu7YbLSKwhZBw8e1Pbt27Vjxw4dOnRIp06dUm5urrfHAwCgwmHlFQAUw5MrrYoTEhKil+8ZqdfmzdVPtcJkxFa/4j5Buw7plrAYvZT4HKcLAjClJg2aqZ/fA1o09yPV6ZOn4Ej/y25vz3fowFf56hTbV9dc09X5vM1mU61atZSRkaGzZ88qPz/f3aNfFiuzAABwL+IVAFzA29HqQiEhIXph2AgtW79O327doV/D/OWoHyuL//9+2bNnnlPor8fUXAF6qO9g9eregxVXAEytfp1GGl3zBX21Yp725+5UlTbnVL1RiKy286dBGIahtJRsndxkU2ROfQ3vcbfCwsIKHcNisSg6OlrR0dEyDEPZ2dk6e/YsMQsA4HKGYZFholP1zDSLJxGvAEDmilYXu6HLtbqhy7U6fOSI1u/YpmOZp+SQQwFWmxpF1dCtdw9UXFycgoKCvD0qAJSIzWbTgBvulGEY+mX3z9r11U/KsWRIkvwcgWoU3Uy3d+9YoshjsVgUHBys4OBgYhYAABUU8QpApWbmaHWxunXqqG6dOs6vo6KiVLNmTaIVAJ9lsVjUskVrtWzR2qXHJGYBAFCxEK8AVEq+FK0uRrQCgJIjZgEAysMhixwyz6l6ZprFk4hXACoVohUAVG7ELAAAfA/xCkClQLQCABSHmAUAgPkRrwBUaEQrAEBpELMAABdyGBY5THSHPzPN4knEKwAVEtEKAOAKxCwAALyPeAWgQiFaAQDciZgFAIDnEa8AVAhEKwCANxCzAKBiMwyLDBOdqmemWTyJeAXApxGtAABmQswCAMD1iFcAfBLRCgDgC4hZAACUH/EKgE8hWgEAfBkxCwB8i6/fbfCVV17RggULtGvXLgUHB+vaa6/VxIkT1bx588vut2rVKj322GP6+eefVatWLT3xxBMaNWpUeUYvF+IVAJ9AtAIAVETELACAO61atUpjxoxRp06dlJ+fr2effVY33XSTdu7cqdDQ0GL3OXDggPr06aORI0dq9uzZ+uGHHzR69GjVqFFDgwYN8vAnOI94BcDUiFYAgMqEmAUAcKWlS5cW+nr69OmKjo7Wjz/+qG7duhW7z9SpU1WvXj299dZbkqS4uDht2rRJr732GvEKAC5EtAIAgJgFAN5m1rsNpqenF3o+MDBQgYGBV9w/LS1N0vnfWS5l/fr1uummmwo9d/PNN+vDDz9UXl6e/P39Szt2uRGvAJgK0QoAgEsjZgEAJKlu3bqFvh4/frwSExMvu49hGHrsscfUtWtXtW7d+pLbpaSkKCYmptBzMTExys/P18mTJ1WzZs0yz11WxCsApkC0AgCg9IhZAFA5HT58WOHh4c6vS7Lq6qGHHtJPP/2ktWvXXnFbi6XwajPDMIp93lOIVwC8imgFAIDrELMAwLUMk91tsOC0wfDw8ELx6koefvhhLVq0SKtXr1adOnUuu21sbKxSUlIKPXf8+HH5+fmpWrVqpR/aBYhXALyCaAUAgPsRswCgcjMMQw8//LD+/e9/a+XKlWrYsOEV9+nSpYu+/PLLQs99++23io+P98r1riTiFQAPI1oBAOA9xCwAqFzGjBmjuXPn6osvvlCVKlWcK6oiIiIUHBwsSXr66aeVnJysmTNnSpJGjRqld955R4899phGjhyp9evX68MPP9THH3/stc9BvALgEUQrAADMh5gFAJdnSPr9ck+mUNpR/vWvf0mSevToUej56dOna/jw4ZKkY8eOKSkpyflaw4YNtWTJEv3lL3/RP//5T9WqVUuTJ0/WoEGDyjF5+RCvALgV0QoAAN9BzAKAisUoQXmbMWNGkee6d++uzZs3u2GisiFeAXALohUAAL6PmAUAMAPiFQCXIloBAFBxEbMAVDYOWWSRee426DDRLJ5EvALgEkQrAAAqH2IWAMATiFcAyoVoBQAACngqZiUlJSkxMVFnzpxRWFiYEhMT1ahRo0tun5OTo7vvvltBQUGaNWuWM2bNnDlTS5YskSQ1a9ZM06dPV3R0dJH9hw8frvj4eD300EPlnh0AUHrEKwBlQrQCAABX4q6Y9fLLL+u2225Tv379tGzZMk2YMEHTp0+/5PZTpkxRmzZttHfvXudzGzZs0OLFizVt2jSFhobqvffe00MPPaQXXniBlVkAnAzDIsMwz6l6ZprFk6zeHgCAb8nKytKvv/6qnTt3+ly4ioqKUqtWrdSwYUPCFQAAXlAQs6Kjo9WoUSO1bdtWLVu2VN26dVW1alX5+V35v62fPn1au3bt0i233CJJ6tWrl44ePaqjR48Wu/2WLVuUlJSkPn36FHp+7969uuqqqxQaGipJuu6667RkyRLnqqyDBw9q+/bt2rFjhzIyMrR582Zdf/31atasmW6//Xbl5uaW87sBACgpVl4BKBFWWgEAAFcry8qs1NRU1ahRwxm6LBaLYmJilJKSolq1ahXaNisrS6+//rreeOMNJSUlFXotLi5OCxYs0KlTpxQVFaUlS5YoMzNTaWlpioiIcG5XcM2sH3/8UVOmTFFYWJjuv/9+zZgxQ8OHD2dlFgB4APEKwGURrQAAgKeUJGYVbFcSkyZN0pAhQxQdHV0kXsXHxyshIUGPPvqobDabevbsKUmXXP3Vs2dPBQUFKT8/X82aNdOWLVvUsWNHLgAPVHAOwyKLiU7Vc5hoFk8iXgEoFtEKAAB4W3ExKzIyUidOnFCVKlWUlZWlvLw8paamKjY2tsj+W7du1Q8//KAPPvhAubm5Sk9P1x133KHPPvtMkjR48GANHjxYkrR9+3bFxMQ4TyO82IVRymazyW63S+JuhgDgCcQrAIUQrQAAgFlZLBbVr19fHTp00Lp16zRs2DB9/PHHql+/vlq1alXkNMNPPvnE+edNmzZp0qRJmjVrlvO5kydPqnr16srOztbUqVN1zz33lHtGYhYAuB7xCoAkohUAAPAd7777roYPH66XX35Z4eHhmjlzpho1aiTDMHTffffp+uuvV9euXa94N8MxY8bIMAzl5eWpT58+Gjp0qMtnJWYBvs0wzj/MwkyzeJLFMCrrRwcgEa0AAO63bdu2ywaE0vLz81O7du1cdjxUXCW5ALy3EbMAc0pPT1dERIRaffpX2UICvT2Ok/1cjn4e+qrS0tIUHh7u7XE8hpVXQCVFtAIAABVdWe5m6GmszAKAKyNeAZUM0QoAAFRWxCwApWUYFhkmusOfmWbxJOIVUEkQrQAAAAojZgGAbyBeARUc0QoAAKBkiFkAYE7EK6CCIloBAACUDzELAKcNmgPxCqhgiFYAAADuQcwCAO8gXgEVBNEKAADAs4hZAOAZxCvAxxGtAAAAzIGYBVQ8DsMii4lO1XOYaBZPIl4BPopoBQAAYG7ELABwDeIV4GOIVgAAAL6JmAUAZUO8AnwE0QoAAKBiIWYB5mcY5x9mYaZZPIl4BZgc0QoAAKByIGYBQPGIV4BJEa0AAAAqN2IWAJxHvAJMhmgFAACA4hCzAM87f9qgee7wx2mDALyKaAUAAIDSIGYBqCyIV4CXEa0AAADgCsQsABUV8QrwEqIVAAAA3ImYBZSfYVhMdtqgeWbxJOIV4GFEKwAAAHgDMQuAryJeAR5CtAIAAICZELMA+AriFeBmRCsAAAD4AmIWUJTx+8MszDSLJxGvADchWgEAAMCXXS5mFQQtYhYATyBeAS5GtAIAAEBFRMwC4C3EK8BFiFYAAACoTIhZqAy426A5EK+AciJaAQAAAMSs0sjOztadd96pnTt3KiQkRLGxsZo6daoaNGhQaDvDMPTEE09oyZIlstlsqlatmt5//301adJEkvTaa69pxowZ8vPzU1BQkN5++2116tRJBw8eVHx8vPNzAr6OeAWUEdEKAAAAuLTKGrN2796h/66bJ4sjWRbLWRmGJEt1+QU21E23/ElRUVGSpAceeEC33HKLLBaL3nnnHT3wwAP69ttvCx1r0aJFWr16tbZu3Sp/f3/9/e9/1zPPPKPPPvtM27Zt09tvv62ff/5ZYWFhmj17tsaMGaP//ve/5f6+AGZDvAJKiWgFAAAAlF5Fj1nbf/qvNqx5VS3q7dBdvfNlsRQ+vSs319DSxXN1MqOTbrvjZfXp08f5WufOnfXWW29dcqbs7Gz5+fkpPT1dderUcb6Wl5enzMxMhYWF6cyZM4Vek6QXXnhBixcvVlpamiZPnlzoPVFC3G7QFIhXQAkRrQAAAADXqSgxyzAMfTr3ZcWEfqb7B2X9vmfR6xIFBFjU/8YM2e3f67P5/dUg7in94bp+kqTJkyerX79+Rfbp16+fVq5cqdjYWFWpUkW1a9fWqlWrJEnt2rXTY489poYNGyoqKkqBgYFavXq1c99Tp06pY8eO+tvf/qalS5dq7NixxCv4LOIVcAVEKwAAAMD9fDVmrfhuqm7t+q0a1C3ZMWw2i/7Y/4RWrHteq1fatXbdTu3du1dTp04tsu3mzZu1a9cuJScnKzw8XE899ZQeeughzZgxQ4cOHdKiRYu0f/9+1axZU++8844SEhK0cuVKSVJoaKgGDBggSerSpYv279/vku8B4A3EK+ASiFYAAACA9/hCzNqwfom6tvuuxOHqQj2vPad7Hxmr7bsjtWrVKoWEhBTZZsaMGerZs6ciIyMlScOGDXOunpo3b55at26tmjVrSpLuu+8+PfLII7Lb7ZJU6HcBm83mfB6lZLK7DcpMs3gQ8Qq4CNEKAAAAMB+zxaycnBzlps1Tu5ZluwjRm1N/085dZ3XvXZ2dcepijRo10jfffKO//OUv8vf315dffqnWrVs7X5s5c6YyMjIUFhamL7/8UnFxcbLZbGX9SIBpEa+A340ePVqLFi1ScnKyPvnkE+ftZy/21Vdfae7cuc6vU1NT1aFDB7366quSpDVr1uitt96S3W5X06ZN9eKLLxb7X1ESExMVFxenoUOHlnt2ohUAAAAqG2/HrP9uWKhh/U9LKn0sOnI0T+NePKlG9f01ZeoiTZvVUmFhVfSf//xHI0aMUP/+/dW/f3+NGTNGv/zyi9q0aaOAgADVrFlT7777riTptttu08aNGxUfH++8Ftfs2bNd/CkBcyBeodIrWGl11VVXqW/fvhoxYsRlt+/bt6/69u3r/Hro0KHq3bu3JOncuXOaMGGC3nvvPTVo0EATJ07UtGnT9NBDD7lldqIVAAAAcJ6nY5bNvk0R4WVb5VSnlr/sx5pKkhwOQ598O0h3D58gSfrggw+c2wUGBur9998v9hgWi0WvvPKKXnnllSKvNWjQwHldLkkKCwuTYVTS29SVk2Gcf5iFmWbxJOIVKq2LTw/s0KFDqY+xY8cOnT59Wt27d5ckrVu3TnFxcWrQoIEkaciQIRo7duwl49WBAwc0evRopaSkqHHjxnr55Zfl7+9/xfclWgEAAACX586Y5XA4FBp4wiVzWq0WWRxJLjkWUFERr1DpuPKaVl988YX69OkjP7/z/yqlpKQ4L5goSbVq1dLx48flcDhktVqL7L9nzx5NmTJF/v7+GjlypJYvX+5cxVUcohUAAABQNq6MWadPn1ad2LOSXHTxbMdx1xwHqKCIV6g0XH0h9uzsbH333XeaNm1aoectlpL/H1jPnj2dIapVq1Y6cuRIsdsRrQAAAADXKk/MysvLU5VAQy6LV3K46DhwNcNkdxs00yyeRLxCheeuuwcuW7ZMDRs2VKNGjZzPxcbGauPGjc6vjx49qujo6GJXXUlSQECA88/F3b6WaAUAAAB4RmliVkREhFL2BkhyzTW0DBW9wROA/yFeocJyV7QqsGjRIg0YMKDQc126dNHEiRN18OBBNWjQQPPmzdNNN91U6mMTrQAAAADvulLM2vljNUmprnkzax3XHAeooIhXqHDKGq0mTpyoVatW6dSpUxozZoyCg4O1cOFCSdKECRPUrVs354XZjxw5ol27dunNN98sdIzQ0FA999xzevzxx2W329WkSRMlJiaWeIbg4GC1atWKaAUAAACYzMUxa1VwWxnGt6W6bEhxjqU6VC3mGhdNCZczLOcfZmGmWTzIYnC/TFQQ7l5p5U6stAIAVGTbtm1z6e3p/fz81K5dO5cdDwDKYufOrfrtwB/VpaP9yhtfxkcLauveB5fJZrO5aDK4Qnp6uiIiItTgw+dlDTHP72mOc9k6eP8EpaWlKTw83NvjeAwrr+DziFYAAAAAPK1ly/b617JrFd92tfz9y7Ya5kCSVKPOXYQr4AqIV/BZRCsAAAAA3nTXsDc0Y3p/jbzzWKn3zcpy6Ou112rMX0a4YTK4imGcf5iFmWbxJOIVfA7RCgAAAIAZRERE6Mb+72ravAc17PajstlKtgLrTJpDsxZ10KhH3i/3NbOAyoB4BZ9BtAIAAABgNo0atVDEXQv0wezH9Id2G9S6xaWXxjgchr5bE6JTWbdpzF+ek58fv5IDJcG/KTA9ohUAAAAAM6tWrZr+PPYjrV+3TNP/PUeB1j1qWOeEakXnye6Q9h4M0fHfYuWwtlXPm8aoQYMm3h4ZJWX8/jALM83iQcQrmBbRCgAAAIAv6XLtDepy7Q0yDEO//vqrko/+KptfgOKvb6kaNWp4ezzAZxGvYDpEKwAAAAC+zGKxqHHjxmrcuLG3RwEqBOIVTINoBQAAAAAwE8OwyDDMc1F9M83iScQreB3RCgAAAAAAXArxCl5DtAIAAAAAAFdCvILHEa0AAAAAAD6jkt7hz0yIV/AYohUAAAAAACgt4hXcjmgFAAAAAADKingFtyFaAQAAAAB8GXcbNAfiFVyOaAUAAAAAAFyFeAWXIVoBAAAAAABXI16h3IhWAAAAAIAKyZC57jZoplk8iHiFMiNaAQAAAAAAdyNeodSIVgAAAAAAwFOIVygxohUAAAAAoHKx/P4wCzPN4jnEK1wR0QoAAAAAAHgL8QqXRLQCAAAAAADeRrxCEUQrAAAAAADE3QZNgngFJ6IVAAAAAAAwG+IViFYAAAAAAMC0iFeVGNEKAAAAAIDL4LRBUyBeVUJEKwAAAAAA4CuIV5UI0QoAAAAAAPga4lUlQLQCAAAAAKAMDMv5h1mYaRYPIl5VYEQrAAAAAADg64hXFRDRCgAAAAAAVBTEqwqEaAUAAAAAgOsYxvmHWZhpFk8iXlUARCsAAAAAAFBREa98GNEKAAAAAABUdMQrH0S0AgAAAADAA4zfH2Zhplk8iHjlQ4hWAAAAAACgsiFe+QCiFQAAAAAAqKyIVyZGtAIAAAAAwIsMy/mHWZhpFg8iXpkQ0QoAAAAAAOA84pWJEK0AAAAAAAAKI16ZANEKAAAAAADzsRjnH2Zhplk8iXjlRUQrAAAAAACAyyNeeQHRCgAAAAAAoGSIVx5EtAIAAAAAwIcYvz/MwkyzeBDxygOIVgAAAAAAAGVDvHIjohUAAAAAAED5EK/cgGgFAAAAAEAFYFjOP8zCTLN4EPHKhYhWAAAAAAAArkW8cgGiFQAAAAAAgHsQr8qBaAUAAAAAQAXG3QZNgXhVBkQrAAAAAAAA6fbbby/1PlOnTlV0dHSJtydelQLRCgAAAAAA4H8WLlyoO+64Q8HBwSXafu7cucrIyCBeuRrRCgAAAACASojTBktk8uTJJY5Rn3/+eamPT7y6DKIVAAAAAADApa1YsUJRUVEl3v7rr79W7dq1S/UexKtiEK0AAAAAAACurHv37qXavmvXrqV+D+LVBYhWAAAAAADAidMGS83hcGjfvn06fvy4HA5Hode6detWpmMSr0S0AgAAAAAAKK8NGzborrvu0qFDh2QYhUubxWKR3W4v03ErdbwiWgEAAAAAALjGqFGjFB8fr8WLF6tmzZqyWCwuOW6ljFdEKwAAAAAAcEWG5fzDLMw0SzH27t2rzz//XE2aNHHpcStVvCJaAQAAAAAAuMc111yjffv2Ea/KgmgFAAAAAADgej/99JPzzw8//LAef/xxpaSkqE2bNvL39y+0bdu2bcv0HhU6XhVEq5SUFAUGBhZ5PSkpSYmJiTpz5ozCwsKUmJioRo0aFdlu4cKF+uijj+RwOHT11VfrySeflJ/f+W/dmjVr9NZbb8lut6tp06Z68cUXFRISoqNHj+qee+7R8uXLyzQ70QoAAAAAAO+yGOcfZmGmWQq0b99eFoul0AXa//SnPzn/XPAaF2y/yLlz55ScnKzTp09r//79uv/++/Xxxx+rbt26hbZ7+eWXddttt6lfv35atmyZJkyYoOnTpxfaJjk5WVOnTtWcOXMUFRWlxx57TF988YUGDRqkc+fOacKECXrvvffUoEEDTZw4UdOmTdNDDz1U5tmJVgAAAAAAwFccOHDA7e9RoeJVZmamvvn6W305d7FOHPhNaalnlXTmV2VnZ+uJB59R/FWddG3vq9W56zX67bfftGvXLr3zzjuSpF69eunVV1/V0aNHVatWLecxly9frp49e6patWqSpEGDBmnmzJkaNGiQ1q1bp7i4ODVo0ECSNGTIEI0dO7ZQvJo6darWrl2rjIwMjRs3Tl27di12dqIVAAAAAADwNfXr13f7e1SIeOVwOLRlyxb939Nv6Oj6UwrMCJPFYlWQIpQRkK7IyEidSjupE9+e02ffL9HSdst07cBOqlGjhvP0P4vFopiYGKWkpBSKVykpKYqNjXV+XatWLaWmpjpfq1mzZqHXjh8/LofDIUlKS0tTixYtNGrUKK1bt06vvfZakXhFtAIAAAAAwKSM3x9mYaZZfrdo0SLdcsstRa5vdSlLlixRz549FRwcXOL3sJZ1OLNwOBya/9kCjbvjOZ36LkdBmVVksZy/deQ5I0Onc07ozTff1OmcE8oyMhWYH6KcH/30+WtfKTMjs0TvUXA8SYXO4bz4tYsFBwerR48eks5flCw5Odn5WlRUlFq1aqWGDRsSrgAAAAAAgE+67bbbdObMmRJvf+edd+rYsWOleg+fX3n1/fLvNeWpafJLCpMu6kgnlKy6tetq2LBhev7Z53X8aLLqq5kkqcqZajqljVrxzUr1vLmHDMNQampqoVVWkhQbG1vom3rs2DHFxMQ4X9u4caPztaNHjyo6OlpW6/kmGBAQ4HzNarXKbrez0goAAAAAAFQYhmFo+PDhxd4orzjZ2dmlfg+fXnmVmpqqyS9Mke1QSLGvnw44rjvvulMWi0V33nWnfgtIdb4WYAlSFUVq2psfKS0tTcuXL1fNmjULnTIoSddff71WrFihU6dOyTAMzZ8/XzfddJMkqUuXLtq5c6cOHjwoSZo3b57ztYtVrVpVklhpBQAAAAAAKoxhw4YpOjpaERERJXokJCQoPDy8VO/h0yuv3n/nA6VvzJe/pWjdyzbO6VRuqgYNGiTp/IXWX3vtNWUrS0GW8+dVxqmjfj65Ubf1v02169VWYmKiJGnChAnq1q2bunfvrjp16ujBBx/U/fffL8MwFB8fr4EDB0qSQkND9dxzz+nxxx+X3W5XkyZNnMcoULDSKj8/323fBwAAAG975JFHtGjRIh06dEjbt29X69atL7t9Tk6O7r77bgUFBWnWrFnO52fOnKmvvvpKhmGofv36Gj9+vKpUqVJk/+HDhys+Pr5cd3kGAADlN336dLe/h8/GqzVr1mjmtNnKsxf/eqbSFRMdq06dOkmSrr76akXXiNHuE1sUavyv8EUpWg5rruLj47V06VLddNNNev755wsd67bbbtNtt91W7Pt0795d3bt3L/J869atlZKSUmiV1cXXywIAAKgoBg8erCeeeOKSd1a+2JQpU9SmTRvt3bvX+dyGDRu0ePFiTZ8+XaGhoXrvvfc0ZcoUPfnkk+4aGwAA+ACfjVfr16/XvmO7ZchQfId4hYaGXrRFjO66+y7n9aesVqv+NuFFfTzn4yLHysjM1KxZs2Sz2RQXF6emTZuWeS6uaQUAACqjbt26lXjbLVu2KCkpSQkJCZo0aZLz+b179+qqq65y/r3uuuuu06hRoy4Zr3bu3KkbbrhBSUlJat26tT755JNC1xwFAKC8LJIsJlqHculbxlVsPhuvgvyC1da4Vr8GbNfp06f17vvvqkOHDpfd58EHH9SDDz5Y6LnNmzdr8O2DFRlRVW++9YbatGlTpnmIVgAAAFeWlZWl119/XW+88YaSkpIKvRYXF6cFCxbo1KlTioqK0pIlS5SZmam0tDRFREQUOdbWrVu1fPlyBQQEqFu3bpo/f77++Mc/euqjAAAAD/HZC7YfOZCsGpaa6pjbU1mH83XN1dfozTffLPGpeQ6HQ2+++aauufoaZR+x65bOfcsUrqpWrapWrVpxIXYAAIASmDRpkoYMGaLo6Ogir8XHxyshIUGPPvqo7rvvPlWvXl2S5OdX/H9vvf322xUcHCybzaarr75a+/fvd+vsAADAO3x25ZUs568h5WfxV0t7Jx3VQT351yf19ZKlmj1nVrF/ISpw/Phx3Z1wj1auWKFm9vaqqfolvqXjxXJzc5Wbm6vAwEBZLJV1AR8AAEDJbN26VT/88IM++OAD5ebmKj09XXfccYc+++wzSeevnTV48GBJ0vbt2xUTE1PM5SHOu/A/HNpsNm6QAwBwPcNy/mEWZpqllJKTk1W7du0y7euz8apJXGOtt2xXkEJksVhUWw0Vaa+uTas2qU2rNtr3675i70xz9uxZtWnVRnlpdsXbr1eo5fw2IRHBZZojMzNTe/fuVWhoqGrVqqUqVaoQsQAAAC7hk08+cf5506ZNmjRpUqG7DZ48eVLVq1dXdna2pk6dqnvuuccbYwIAABdJSUnRSy+9pA8++EBZWVllOobPnjbY+Q/XSNXzCj0XaqmimnkNlZObe8lT+IKCgpSdk6OaeQ2d4SpHWWratlG55imIWLt371Z6ejp3FgQAAJXKmDFjVKdOHR05ckQ33HCDmjRp4nztxRdf1KpVq0p8nDvuuEN//OMf1b59ew0dOtRdIwMAABc5c+aMEhISVKNGDdWqVUuTJ0+Ww+HQCy+8oEaNGmnDhg2aNm1amY9vMXy0spw9e1b39X1AaWsKLw/fbluvW+6+UdOnT7/kvsOHD9fSOcvVxt5ZkuRodE4vz3nhktdTKAtWYgEAAJy3bds2l57S5+fnp3bt2rnseAAAXCw9PV0RERGq/8pLspro+taO7GwdevpZpaWlKTw83NvjOI0ePVpffvmlhg4dqqVLl+qXX37RzTffrOzsbI0fP17du3cv1/F9duVVlSpVdF2/a5Xr/78lZ/lGnk46UjRkyBDnc3PmzFGTxk01Z84c53NDhgzRSccx5Rt5sht2NevS0KXhSmIlFgAAAAAAqBwWL16s6dOn67XXXtOiRYtkGIaaNWum77//vtzhSvLheCVJw0bcoxpdw5xh6KSOKSgoSL169dLZs2d199336N57hynj1xzde+8w3X33PTp79qxuuOEGBQUF6aSOya9lru4e5b5bKhOxAAAAAABARXb06FG1bNlSktSoUSMFBQVpxIgRLju+T8eryMhIPfPqE1KLczIMQydtx9Svf39t375dbVu31aJ5X6qjo7vaWK5RR0c3LZr3pdq2bqsdO3aob79+OhF6RH98dPAlr4/lSkQsAAAAAAB8jGHChwk5HA75+/s7v7bZbJe8W3BZ+OzdBgt06NBBL7z7lF4c87JO/ZKiEyeOq0vnLqqh2upo7yE/y/lvXoSlmjrm9tCe5K3qfE1ndeveTWfyT6tZy6YenZe7EwIAAAAAgIrEMAwNHz5cgYGBkqTs7GyNGjWqSMBasGBBmY7v0yuvCnTr1k1DxgxUnj1Pq1etURN7W7W0xzvDVQGb/NQwtLmuah6v9evXKycnW+vWrfPKzKzEAgAAAAAA7rR69Wr169dPtWrVksVi0cKFCy+7/cqVK2WxWIo8du3addn97r33XkVHRysiIkIRERG6++67VatWLefXBY+y8vmVVwUyMzPVqVMnPfHEE/rhu/VK2XdCv6WkKy87TzY/m8Kjw1StbqT63HGv6tStrYMHDyoxMVFHjx71+tysxAIAAAAAwHwsxvmHWZR2lszMTLVr10733XefBg0aVOL9du/eXehuhjVq1Ljs9jNmzCjdYKVUYeLV448/rscff1ySNHDgQB07dkwnTpy45IqmBg0auP2bWxpELAAAAAAA4Eq33HKLbrnlllLvFx0drcjIyBJvb7PZdOzYMUVHR5f6vUqiQpw2eDE/Pz/VrVtXbdu2VWxsrKxW3/mYnE4IAAAAAAAuJz09vdAjJyfHpce/6qqrVLNmTfXq1UsrVqy44vbubhe+U3XKwM/PT7Vr11abNm2IWAAAAAAAoHS8fWfBS9xtsG7duoWuJfXKK6+45OPWrFlT7733nubPn68FCxaoefPm6tWrl1avXu2S45dVhTlt8HIKIlZMTIxSU1N1/PhxORwOb49VIpxOCAAAAAAALnT48OFC16QquMtfeTVv3lzNmzd3ft2lSxcdPnxYr732mrp163bZfb/55psrXpS9f//+ZZqrUsSrAkQsAAAAAADg68LDwwvFK3fq3LmzZs+efcXthg0bdtnXLRaL7HZ7mWaoVPGqABELAAAAAABc0QWn6pmCF2bZsmWLatasecXtUlJS3HbB9koZrwoQsQAAAAAAQEWVkZGhffv2Ob8+cOCAtm7dqqioKNWrV09PP/20kpOTNXPmTEnSW2+9pQYNGqhVq1bKzc3V7NmzNX/+fM2fP/+y7+PuHlGp41UBIhYAAAAAAKhoNm3apJ49ezq/fuyxxySdP8VvxowZOnbsmJKSkpyv5+bmaty4cUpOTlZwcLBatWqlxYsXq0+fPpd9H3ffZM5icBu7IvLz830uYhUgYgEAALPZtm2b8vPzXXY8Pz8/tWvXzmXHAwDgYunp6YqIiFDDv70ka1CQt8dxcmRn68ALzyotLc1j17wqifvuu0+TJ09WlSpV3HJ8q1uO6uMKVmK1adNGsbGxslp959tUsBJr9+7dSk9Pd3v9BAAAAAAAldvMmTOVlZXltuNz2uBlcDohAAAAAADA5bl74QzxqgSIWAAAAAAAVEKG5fzDLMw0y0Xc2RqIV6VAxAIAAAAAACiqWbNmV+wMp0+fLtOxiVdlQMQCAAAAAAD4nxdffFERERFuOTbxqhyIWAAAAAAAVGDG7w+zMNMsF7nzzjsVHR3tlmMTr1yAiAUAAAAAACord3cE4pULEbEAAAAAAEBlw90GfRARCwAAAAAA32cxzj/MwkyzXMjdzYN45UZELAAAAAAAgPIhXnkAEQsAAAAAAKBsiFceRMQCAAAAAMCHcLdBUyBeeQERCwAAAAAAoGSIV15ExAIAAAAAALg84pUJELEAAAAAADAhk91tkNMG4XVELAAAAAAAgMKIVyZExAIAAAAAADiPeGViRCwAAAAAALyIuw2aAvHKBxCxAAAAAABAZUW88iFELAAAAAAAUNkQr3wQEQsAAAAAAA/gtEFTIF75MCIWAAAAAACo6IhXFQARCwAAAAAAVFTEqwqEiAUAAAAAgOtYjPMPszDTLJ5EvKqAiFgAAAAAAKCiIF5VYEQsAAAAAADg64hXlQARCwAAAAAA+CriVSVCxAIAAAAAAL6GeFUJEbEAAAAAAICvIF5VYkQsAAAAAAAuw/j9YRZmmsWDiFcgYgEAAAAAANMiXsGJiAUAAAAAAMyGeIUiiFgAAAAAAEgW4/zDLMw0iycRr3BJRCwAAAAAAOBtxCtcERELAAAAAAB4C/EKJUbEAgAAAABUOpX0VD0zIV6h1IhYAAAAAADAU4hXKDMiFgAAAAAAcDfiFcqNiAUAAAAAqJAMmeu0QTPN4kHEK7gMEQsAAAAAALga8QouR8QCAAAAAACuQryC2xCxAAAAAAC+zGKcf5iFmWbxJOIV3I6IBQAAAAAAyop4BY8hYgEAAAAAgNIiXsHjiFgAAAAAAJ/A3QZNgXgFryFiAQAAAACAKyFeweuIWAAAAAAA4FKs3h4AKFAQsdq0aaPY2FhZrb7zP8+CiLV7926lp6fLMCrpWk4AAAAAV5Sdna2BAweqWbNmat++vXr37q2DBw8Wu+327dvVo0cPxcXFqXnz5lqwYIEk6cCBA+rYsaPat2+vNm3aaMiQIfrtt98kSQcPHlT16tU99XEqtIK7DZrpURmx8gqmw0osAAAAAL7IbrcrIyNDR44c0eYta3Xs+AFZLFY1bXSV4jt2UXR0tAICAiRJDzzwgG655RZZLBa98847euCBB/Ttt98WOt65c+c0cOBAffTRR+ratavy8/OdgapWrVpau3atgoODJUmPPvqoJkyYoDfeeMOzHxrwAOIVTIuIBQAAAMDMCmJVRkaGzpw5oyXfztaZrP8oIuaomrbN1dV/sMkwpKMHP9a0f4cpJ72hOrQcon63DlWfPn2cx+ncubPeeuutIsefO3euunTpoq5du0o6/ztSjRo1JEmBgYFF5oiMjCy0/wsvvKDFixcrLS1NkydPLvSegC8hXsH0iFgAAAAAzODCWHX27FllZmZKkg4l7dP6rVPVtf9hRVYruPzJ+V+3LRapTiN/1WmUI2mX9u+coOf/vlAPjXxLdevWlSRNnjxZ/fr1K/J+O3fuVFBQkPr27asjR46obdu2ev31150BKzc3V1dffbUOHTqkdu3aadGiRc59T506pY4dO+pvf/ubli5dqrFjxxKvyoK7DZqC71xUCJUe18QCAAAA4El2u11paWlKTk7Wrl27tHXrVu3bt08pKSnOcLVr92b9cuwV9b0v+YJwdWmNW0o33fOT3nzvTu3bt08vv/yy9u7dq5deeqnItnl5efrmm2/07rvvasuWLapbt67GjBnjfD0gIEBbt25VamqqmjdvrqlTpzpfCw0N1YABAyRJXbp00f79+8v77QC8hpVX8DmsxAIAAADgDpdaWXUpJ06mak/qFF1/27lSvY+fv0V9hx/Xnx7orbOnq2jFihUKCQkpsl39+vXVs2dP1a5dW5KUkJBQ7OqpgIAA3XfffRo5cqSeeOIJSVJQUJDzdZvNJrvdXqoZATMhXsFnEbEAAAAAlEdpY9WFDMPQsrWT1fdPGZJK/3f5+dPPKPlouu5JGKGIiIhit7njjjv04YcfKj09XeHh4Vq6dKnatWsnSUpKSlK1atUUGhoqh8Ohzz77TG3bti31HLgCThs0BeIVfJ6rIlZSUpISExN15swZhYWFKTExUY0aNSqy3aZNmzR27FjVr1/f+dy0adMUFBSkffv2aeLEiTp9+rT8/PzUtm1b/fWvf3XeUeRCiYmJiouL09ChQ4lYAAAAgAeUJ1Zd7OedP6rVH/aX6e/vx4/lacpLJ1Wrnr+m/mu65n28UmFhYfrPf/6jESNGqH///urfv7/q1aunp59+Wl26dHH+3vPee+9Jknbs2KGnnnpKkuRwONShQwdNnjy5zJ8HMDOLwcV3UMHk5+eXKWKNGjVKt956q/r166dly5Zpzpw5mj59epHtNm3apEmTJmnWrFlFXktKSlJOTo6aNm0qu92u5557Tk2bNtWf/vSnItteGK8KELEAABXRtm3blJ+f77Lj+fn5OVceAMDluDJWXWzhNy/rhru2l/s4Z9PtOvjDMD305xdcMBVcJT09XREREWr22MuyBQZdeQcPsedka88bzygtLU3h4eHeHsdjWHmFCqcsK7FOnz6tXbt26Z133pEk9erVS6+++qqOHj2qWrVqlfi969Wr5/yzzWZTy5YtdfDgwUtuf+DAAY0ePVopKSlq3LixXn75ZWVmZhKxAAAAgDJwZ6y6mDXwqEuOUyXcptNnf5ZhGPzd34QsxvmHWZhpFk8iXqHCKk3ESk1NVY0aNeTnV3A7W4tiYmKUkpJSbLw6dOiQEhISZLPZ1K9fPw0ZMqTINllZWVq4cKEefvjhS864Z88eTZkyRf7+/ho5cqSWL1+u3r17c00sAAAAoAQ8GasudPbsWYVEnHHZ8ezWE8rKyir2ou0AiFeoBEoasUoah1q0aKElS5YoLCxMqampGjt2rCIjI3XjjTc6t8nPz9fTTz+tzp07q0ePHpc8Vs+ePZ13AWnVqpWOHDlS6HUiFgAAAPA/3opVF8vIyFBoeJ4kq0uOZ7HkuuQ4QEVFvEKlcbmIVfBcfn6+/Pz8ZBiGUlNTFRsbW+Q4YWFhzj/HxMTo5ptv1pYtW5zxKj8/X0899ZSqV6+ucePGXXamCy/kfrnb1xKxAAAAUBmZJVZdLCAgQHm/uSZcSZJh2GS1uu54cCHuNmgKxCtUOsVFrKioKDVv3lxff/21+vXrp+XLl6tmzZrFnjJ48uRJRUVFyWq1KjMzU2vWrNGAAQMk/W/FVXh4uJ599lmXByYiFgAAACoys8aqi0VFRenMjnBJ6S45ntURJZvN5pJjARUR8QqV1sUR67nnntP48eM1ffp0hYaGKjEx0bnthAkT1K1bN3Xv3l3Lly/X/PnznSulevXqpf79+0uSvvvuO61YsUJNmzZVQkKCJKldu3Z68sknXTo7EQsAAAAVga/EqotZLBY5cmLkiniVn2coyFZf/v7+5R8MqKAshmFU0kVnQGH5+fklvjuh2RCxAABmtm3bNuXn57vseH5+fmrXrp3LjgfAc3w1VhVnzbqvVP+amYqKLt+KqXXfBqj/Hz5Vq1atXDQZXCE9PV0RERFqPvZl2QKDvD2Okz0nW7snPaO0tDSFh4d7exyPYeUV8LvS3J3QbFiJBQAAADOqSLHqYl2u7q0F33yrPvecKPMx8nINZRxrrWbNmrlwMqDiIV4BFyFiAQAAAGVTkWPVxfz8/NS60TDt+O+ban118TdeupLl8yM1avhEThkEroB4BVwCEQsAAAC4vMoUq4rTskVHfb+6v/b9/IWatCrd7wprFoeo21XPqH79+m6aDq5gMc4/zMJMs3gS8Qq4AiIWAAAAcF5lj1XFub7bHVr3nxCt/vXfuq5v5hX/vn0u06GVC2J1c9dn1bNHbw9NCfg24hVQQkQsAAAAVDbEqpK59pq+OnHyan03+0MFR+1Wh27nFFql8IXcjx/N17a1NRSsjnrsgfGKiYnx0rSA7yFeAaVExAIAAEBFZbfblZmZqbNnzxKrSqlG9Wjd3udpZWRk6MflK3Q2+6BkOyc5LLIakapfp6P+cv8gRUVF8XdwX2L8/jALM83iQcQroIyIWAAAAPB1xCrXCwsLU8/uA1SlShWFhYWpSpUqCgkJ4e/bQDkQr4ByImIBAADAVxCr3MNqtRKrADciXgEuQsQCAACA2RCr3INYVXlwt0FzIF4BLkbEAgAAgLcQq9yDWAV4F/EKcBMiFgAAANyNWOUexCrAXIhXgJsRsQAAAOAqxCr3IFbhkrjboCkQrwAPIWIBAACgtIhV7kGsAnwL8QrwMCIWAAAALoVY5R7EKsC3Ea8ALyFiAQAAgFjlHsQquAynDZoC8QrwMiIWAABA5UGscg9iFVCxEa8AkyBiAQAAVDzEKvcgVgGVC/EKMBkiFgAAgO8iVrkHsQreYvn9YRZmmsWTiFeASRGxAAAAzI9Y5R7EKgAXIl4BJkfEAgAAMA9ilXsQqwBcDvEK8BFELAAAAM8jVrkHsQo+g7sNmgLxCvAxRCwAAAD3IVa5B7EKQHkQrwAfRcQCAAAoP2KVexCrALgS8QrwcUQsAACAkiNWuQexChWVxTj/MAszzeJJxCuggiBiAQAAFEWscg9iFQBPIl4BFQwRCwAAVGbEKvcgVgHwJuIVUEERsQAAQGVArHIPYhXwO+42aArEK6CCI2IBAICKhFjlHsQqAGZGvAIqCSIWAADwRcQq9yBWAfAlxCugkiFiAQAAMyNWuQexCiiHSnqqnpkQr4BKiogFAADMoCyx6tVXX9Xq1at17NgxffLJJ2rSpEmx223atEljx45V/fr1nc9NmzZNQUFBkqSZM2fqq6++kmEYql+/vsaPH68qVaoUOU5iYqLi4uI0dOjQMn5KzyNWAahIiFdAJUfEAgAAnuSKlVW9evXSvffeqxEjRlxx20aNGmnWrFlFnt+wYYMWL16s6dOnKzQ0VO+9956mTJmiJ598stTzmAGxCkBFRrwCIImIBQAA3MMdpwF26NCh3MfYu3evrrrqKoWGhkqSrrvuOo0aNeqS8erAgQMaPXq0UlJS1LhxY7388svy9/cv9xxlRawCPMNinH+YhZlm8STiFYBCiFgAAKA8zHbNqkOHDikhIUE2m039+vXTkCFDJElxcXFasGCBTp06paioKC1ZskSZmZlKS0tTREREkePs2bNHU6ZMkb+/v0aOHKnly5erd+/eHvscxCoAlRnxCkCxiFgAAKAkzBarLtSiRQstWbJEYWFhSk1N1dixYxUZGakbb7xR8fHxSkhI0KOPPiqbzaaePXtKOv93oOL07NnTea2sVq1a6ciRI26dnVgFmIQhc12w3UyzeBDxCsBlEbEAAMCFzByrLhYWFub8c0xMjG6++WZt2bJFN954oyRp8ODBGjx4sCRp+/btiomJcZ5GeLGAgADnn202m+x2u0tnJVYBwKURrwCUCBELAIDKyZdi1cVOnjypqKgoWa1WZWZmas2aNRowYECh16tXr67s7GxNnTpV99xzj8dmI1YBQMkRrwCUChELAICKzRdi1cSJE7Vq1SqdOnVKY8aMUXBwsBYuXChJmjBhgrp166bu3btr+fLlmj9/vnOlVK9evdS/f3/nccaMGSPDMJSXl6c+ffpo6NChbpuZWAX4Ji7Ybg4WwzAq6UcH4Ar5+fk+F7EKELEAwDO2bdum/Px8lx3Pz89P7dq1c9nxKjtfiFW+iFgF+Lb09HRFRESozYiXZQsI8vY4TvbcbG3/4BmlpaUpPDzc2+N4DCuvAJQLK7EAAPAtxCr3IFYBgPsQrwC4BBELAABzIla5B7EKqCS426ApEK8AuBQRCwAA7yJWuQexCgC8h3gFwC2IWAAAeAaxyj2IVQBgHsQrAG5FxAIAwLWIVe5BrAJQHO42aA7EKwAeQcQCAKBsiFXuQawCAN9BvALgUUQsAAAuj1jlHsQqAPBdxCsAXkHEAgDgPGKVexCrALgEdxs0BeIVAK8iYgEAKhtilXsQqwCg4iJeATAFIhYAoKIiVrkHsQoAKg/iFQBTIWIBAHwdsco9iFUAvILTBk2BeAXAlIhYAABfQaxyD2IVAKAA8QqAqRGxAABmQ6xyD2IVAOBSiFcAfAIRCwDgLcQq9yBWAfAFFuP8wyzMNIsnEa8A+BQiFgDA3YhV7kGsAgCUFfEKgE8iYgEAXIVY5R7EKgCAqxCvAPg0IhYAoLSIVe5BrAJQIXG3QVMgXgGoEIhYAIBLIVa5B7EKAOApxCsAFQoRCwBArHIPYhUAwFuIVwAqJCIWAFQexCr3IFYBgGQxDFkM85yrZ6ZZPIl4BaBCI2IBQMVjGIbS09OJVS5GrAIAmBXxCkClQMQCgIrDbrdr79693h7D5xGrAAC+gngFoFIhYgEAKitiFQCUAXcbNAWrtwcAAG8oiFht2rRRbGysrFbf+XFYELF2796t9PR0GRec9753715de+21atasma6++mrt3LmzyP4rV65USEiI2rdv73xkZWVJkrZv365u3bqpRYsWatOmjR544AHl5ORIkg4ePKjq1at75kMCwO9effVV9evXT/Hx8dq3b98lt1u4cKFuu+02DRgwQC+99JLy8/MLvW4Yhv785z+rV69ezueOHj1a6OuKxmq1KiIiQrVr11aLFi3Uvn17NWnSRLGxsQoNDSVcAQB8BiuvAFRqvrISy26364c1G7T3l0NKO50th8Mh/wCbqlYLUac/tFfr1i1lsVg0cuRI9e3bVwMGDNB3332nP/7xj5o5c2ahY+3bt08NGzbURx995Hxuz549kqRDhw7p4YcfVrNmzWS32/X0009r3LhxGjFihJKTk2W327Vt2zaPfnYAvu/ikFQgKytL365Yo8Opv+lsVp4MSSEBNkVHhuiG7tcqukYN9erVS/fee69GjBhxyeMnJydr6tSpmjNnjqKiovTYY4/piy++0KBBg5zbfPrpp6pZs6bz511FxMoqAEBFRbwCAJk3YjkcDn3+8SJt23BQuaciFWirIinQ+fpxw9DWFd+rat3vdHX3Fvrll1/09ttvKz8/Xz169NA//vEPJSUlqVatWs597Ha7DMMo9pfJ2rVrS/rfL5pxcXE6ePCg8vPznfu98847Wrt2rTIyMjRu3Dh17drVvd8EABVOZmamPpj7b+1JOaec8Pqy+cf+78VcaWeKXSunfqn6EdI9t92kmJiYyx5v+fLl6tmzp6pVqyZJGjRokGbOnOmMV0lJSfr222+VmJioVatWFdl/6tSpPvlzjVgFAO5nMc4/zMJMs3gS8QoALmCmiHX8+HFNeW2Ozh2prgBbXQXaim5jsVgUYolWTrL072kbZLP6F3otJiZGKSkpheKVdH6FVUJCgmw2m/r166chQ4YUOXZWVpYWLlyohx9+2PlcWlqaWrRooVGjRmndunV67bXXfOaXPADmsHHzNs1esk5Zkc1lqWZTMT/aZLHapGqNdcgw9MrMb3VD29qXPWZKSopiY/8XwGrVqqXU1FRJ5/8jwN///nc9+eST8vMr+ldfX/q5RqwCAFRWxCsAKIa3I9bx48f1xoszZUtroABbyX4x8TcilZ9t1at//5eeeH60bLbifiWUWrRooSVLligsLEypqakaO3asIiMjdeONNzq3yc/P19NPP63OnTurR48ezueDg4OdX7dt21bJycll/owAKp/1Gzdr5nc/yRHVUiX5yWaxWOSo2lhLfzmhjMxzV9y2wIXXApw1a5Y6dOig5s2b6+jRo0X2M/PPNWIVAADnEa8A4DK8EbEMw9C/Xp8rW1qDUv2SEuQfrpz8DJ3eE6FZH87TsJFDlZqaWmg1giSFhYU5/xwTE6Obb75ZW7Zsccar/Px8PfXUU6pevbrGjRtXaN+AgADnn61Wq+x2e1k+IoBK6PRvv2nO0v/KUS2u1Ptaw2ooJ9/Q9p93qUmTJkVej42N1bFjx5xfHzt2zHmq4ZYtW7R3714tXrxYdrtdZ8+eVb9+/TRnzhxJ5vq5RqwCABPiboOmQLwCgBLwZMRa8NlXOnc4Sv4lXHFVINAvVFWCYnTi7H7tWFddH4d+rJo1axY5ZfDkyZOKioqS1WpVZmam1qxZowEDBkj634qr8PBwPfvss/zSBMBlps5aoNyo5iVacVUsq01Lf9imfrf2LnL63/XXX68RI0ZoxIgRioqK0vz583XTTTdJkt566y3ndkePHtU999yjL7/8UpKUkZFR1mlcglgFAEDJEK8AoBTcHbEMw9DWdfvlb6tbpv1bxfbW9mNf6deTWdqe7KcpU9+RJE2YMEHdunVT9+7dtXz5cs2fP182m012u129evVS//79JUnfffedVqxYoaZNmyohIUGS1K5dOz355JOu+YDwuKSkJCUmJurMmTMKCwtTYmKiGjVqVGS7TZs2aezYsapfv77zuWnTpikoKEj79u3TxIkTdfr0afn5+alt27b661//WmjFSoHExETFxcVp6NChbv1c8C1Hj6Xo1zSLbNWspd43ad18nUn6WXlZZ7Vt3bfq02e1vv32m0I/1+rUqaMHH3xQ999/vwzDUHx8vAYOHOj6D1JOxCoAAMrGYlx4UQAAQKnk5+e7NGJt2rhFH7+xScF+UeU+Vm7wIb3yr7GXvPYVKodRo0bp1ltvVb9+/bRs2TLNmTNH06dPL7Ldpk2bNGnSJM2aNavIa0lJScrJyVHTpk1lt9v13HPPqWnTpvrTn/5UZFviFYrz3szPtOlsDVkspY9XF6udf0AvPDK8/EN5ALEKAHxXenq6IiIi1OGPL8kWEOTtcZzsudna/PGzSktLU3h4+BW3X716tV599VX9+OOPOnbsmP79739f8T/wrFq1So899ph+/vln1apVS0888YRGjRrlok9QNuX/GwQAVGIFK7HatGmj2NhYWa3l+7G6Y+seBdmqumS2vPQg/frrAZccC77p9OnT2rVrl2655RZJUq9evXT06NFiL1p9OfXq1VPTpk0lSTabTS1btrzsRa0PHDig0aP/v717D7K7rPM8/jnpSzrkai4kyCRcBieJUSDAWEQByWQAiQLK1ZoszLgDFspoKAoH0S1UWGUdlWJZK2K20JWZctSdOO4oGRSzIliKU7jJiEaFlUiATYIJmECg05fz2z8CjTENJOk+p5/ufr2qflWk+/Svv4cikH7zPL/nvTn33HPzgQ98IN3d3Qf+JhgRfrujc1DCVZJsfXpXSv1/r2PGjMnkyZNz6KGHZt68eTn22GNz1FFHZdasWRk/frxwBUDT7dy5M8ccc0w++9nP7tPrN2zYkKVLl+bkk0/O2rVr86EPfSjvf//7s2rVqgZP+vJsGwQYBIO1nfDp3z2XWm3ioMw0rmVafv7TX+Y1r9n74caMDlu2bMmMGTP6ng9Uq9Uyc+bMbN68ea9noSXJI488kmXLlqWlpSVnnXVWLrjggr1e89xzz+Ub3/hG3ve+973k933wwQezYsWKtLW15bLLLsuaNWvylre8ZfDeGMPO757tSia88uv2xc6etmzfvj1TpkwZnBsOgJVVAJTuzDPP7Psfmfvi1ltvzZw5c/qeGTl//vzcf//9+fSnP53zzjuvQVO+MvEKYBANNGJVg/gM+FqtJbt2WfEy2u3rD9Lz5s3L6tWrM2HChGzZsiXLly/PlClT+k6hTF58oP+JJ56YU0899SXvtXjx4nR07F5ev2DBgjz22GMDeg8Mf4N5vkVVGzPkq/laW1szYcKEvOpVr8rEiRPT1tY2pPMA0ECFnja4Y8eOPT48duzYjB07dsC3/9GPftR36MkLzjjjjNx2223p7u4esv/m2TYI0AAHup2wrX3w/rXc3ftcpk0fnC2IDE8vRNSenp4kuw8E2LJlS2bNmrXXaydMmJAJEyb0fd0ZZ5yRtWvX9n2+p6cnH/zgBzN9+vRcffXVL/t9f/9B7i8cDMDo1t42eP9ua6m6+v5ZHSo9PT353e9+lw0bNuSnP/1pfv7zn2fjxo156qmnhjysATA6zJ49O5MnT+67brzxxkG57+bNmzNz5sw9PjZz5sz09PRk69atg/I9DoSVVwANtL8rsabNnJRHq66MqQ38IevdLU/muBPeOuD7MHxNnTo1c+fOzb/+67/mrLPOypo1a3LIIYf0u2Vw69atmTp1asaMGZOdO3fm3nvvzTnnnJPkxRVXkyZNyoc//GHbothv0yeOzZM9g3OvKR1jMm7cuMG52SDp7OxMZ2dnfvvb3yZJOjo6MnHixL4thVZmATDYHn300T0e2D4Yq65e8Id/1nvhWZND+WdA8QqgCfY1Yp28+MTcd+fXclB16IC/58SDa5k6deCnFjK8fehDH8rHPvaxfPGLX8z48ePz0Y9+tO9zN9xwQ0455ZS8+c1vzpo1a7Jq1aq+lVJLlizJ2WefnSS566678r3vfS+vec1rsmzZsiTJMccck2uuuWYo3hLD0JGvnp71Dz2b1rEHDeg+VVVl1pTB+8N5o4hZACNHrdp9leKFWSZNmrRPpw3ur1mzZmXz5s17fOyJJ55Ia2trpk2bNujfb1/VqlKPawEYwXp6el4yYn3yI5/L0w8fPKD799a78/rT2/IXfzl0D1UEeEFXV1eu+uRt6Z722gHdp+d3j+UD570h8+a+ZpAmGxpiFkD5duzYkcmTJ+f4iz6elvaOoR6nT29XZ37y1Q9n+/bt+x2varVa/vmf/zlvf/vbX/I111xzTb75zW9m/fr1fR97z3vek3Xr1uVHP/rRgY49YJ55BTAEXu6ZWGdduDi7Wje/zFe/sjHT/l/OvciWQaAM7e3tedOC2entfPqA71HV6zly/HPDPlwl6VuV9fDDD3tmFgAN9cwzz2TdunVZt25dkmTDhg1Zt25dNm7cmCS59tprc8kll/S9/vLLL88jjzySq666Kr/4xS/yhS98IbfddtsrPvO00cQrgCHUX8R67YJ5ed2bpqervvOA7rmrZUvesezF094ASvDOd7w1s7ofSVU/sAf4j31yff7mry4Y5KnKIGYBFKwq8NoP999/fxYuXJiFCxcmSa666qosXLgw1113XZJk06ZNfSErSY444oisXr06d999d4499tjccMMNueWWW3LeeUO7o8O2QYCCvLCdcPPmzfnsZ27Lxp+0pL1l4j5//a6WLfnzC+fnjKWLGzglwIHZuXNnrv+vX8iTE+ZnTOu+bZWrqipjn/pV3vfO0/InRx3Z4AnLZJshQPP1bRu8sMBtg187sG2Dw5l4BVCgnp6ePPbYY/nvn7s99931UNqeOzS12ksvlu3p3ZWWGVty3sWLc9wJxzZvUID91NnZmc/f/k/52bZaxkz+o5d9bc/OJzO79kTec8m5mXnwjCZNWD4xC6DxxKuyiFcABevs7MyPf/zj/OOXvpENv9yaZ58ak7beKWmptaa73pn62O2ZcnBbXnvcnJx97hmDekQuQCP9/Be/yuq7/y2/2fpMnq1NzJjx01Kr1dLz3I50dD2ZV09pz5uOnZs/O+WNQ3o093AgZgEMvt+PV61t5cSrnm7xCoBCdXd3Z9OmTXn44Yez7v88kJ3PPJup06fk9UcvyIQJE/xgBwxLvb296e3tzSMbN+bBX/8m9d56Zh96SOb+yVECzACIWQADJ16VpXWoBwDglbW1tWXOnDmZM2dOTj311KEeB2BQ/emf/mmqqsquXbvy9NNP55lnnsnTTz/tYeUHqLOzs+8h8ImYBcDwJ14BADDkarVaOjo60tHRkRkzZohZg0jMAhiAqtp9laKkWZpIvAIAoDhiVuOIWQAMN+IVAADFE7MaR8wCoHTiFQAAw46Y1ThiFsCLatXuqxQlzdJM4hUAAMOemNU4YhYAQ028AgBgxBGzGkfMAqDZxCsAAEY8MatxxCxgRKuev0pR0ixNJF4BADDqiFmNI2YBMNjEKwAARj0xq3HELAAGSrwCAIA/IGY1jpgFDCe1+u6rFCXN0kziFQAAvAIxq3HELABeiXgFAAD7ScxqHDELgD8kXgEAwACJWY0jZgFDymmDRRCvAABgkIlZjSNmAYw+4hUAADSYmNU4YhbAyCdeAQBAk4lZjSNmAYOpVu2+SlHSLM0kXgEAwBATsxpHzAIY/sQrAAAojJjVOGIWwPAjXgEAQOHErMYRs4CXVVW7r1KUNEsTiVcAADDMiFmNI2YBlEe8AgCAYU7MahwxC2DoiVcAADDCiFmNI2bB6OK0wTKIVwAAMMKJWY0jZgE0nngFAACjzHCPWZ/61Kdyzz33ZNOmTfnKV76So446qt/X3X///Vm+fHkOO+ywvo994QtfSEdHR5Lk9ttvz7e+9a1UVZXDDjssH/nIRzJx4sS97vPRj3408+fPz0UXXfSKs4lZAINPvAIAgFFuuMWsJUuW5JJLLsmll176iq898sgj8/d///d7ffy+++7LHXfckS9+8YsZP358Vq5cmRUrVuSaa64Z1FnFLBjmquevUpQ0SxOJVwAAwB5Kj1nHHXfcgO/x0EMPZeHChRk/fnyS5OSTT87ll1/+kvFqw4YNee9735vNmzfnj//4j/OJT3zigMKTmAWw/8QrAADgZZUes17OI488kmXLlqWlpSVnnXVWLrjggiTJ/Pnz8/Wvfz3btm3L1KlTs3r16uzcuTPbt2/P5MmT97rPgw8+mBUrVqStrS2XXXZZ1qxZk7e85S0Dnk/MAnhl4hUAALBfhkvMmjdvXlavXp0JEyZky5YtWb58eaZMmZLTTjstJ5xwQpYtW5Yrr7wyLS0tWbx4cZKktbX/H5EWL17c96ysBQsW5LHHHmvIzGIWlMVpg2UQrwAAgAEpNWZNmDCh769nzpyZM844I2vXrs1pp52WJDn//PNz/vnnJ0keeOCBzJw5s28b4R9qb2/v++uWlpb09vY2cPIXiVkA4hUAADDISolZW7duzdSpUzNmzJjs3Lkz9957b84555w9Pj99+vR0dnbm1ltvzcUXX9zwmQZKzAJGI/EKAABoqMGOWZ/85Cfz/e9/P9u2bcsVV1yRcePG5Rvf+EaS5IYbbsgpp5ySN7/5zVmzZk1WrVrVt1JqyZIlOfvss/vuc8UVV6SqqnR3d2fp0qW56KKLBvutN5yYBQ1WVbuvUpQ0SxPVqmqUvnMAAKAIpWwzHInELDgwO3bsyOTJk3Pi0uvT2tYx1OP06enuzH2rr8v27dszadKkoR6naay8AgAAhlQp2wxHIiuzgJFAvAIAAIoiZjWOmAX7x2mDZRCvAACAoolZjSNmAcOBeAUAAAwrYlbjiFlAicQrAABgWBOzGkfMYtSrnr9KUdIsTSReAQAAI4qY1ThiFjAUxCsAAGBEE7MaR8wCmkG8AgAARhUxq3HELEYapw2WQbwCAABGNTGrccQsYDCIVwAAAL9HzGocMQs4EOIVAADAyxCzGkfMonj1avdVipJmaSLxCgAAYD+IWY0jZgH9Ea8AAAAGQMxqHDELSMQrAACAQSVmNY6YRdNVz1+lKGmWJhKvAAAAGkjMahwxC0YH8QoAAKCJxKzGEbNgZBKvAAAAhpCY1ThiFgNVS1IraKtebagHGCLiFQAAQEHErMYRs2B4Eq8AAAAKJmY1jpgFw4N4BQAAMIyIWY0jZrGXqtp9laKkWZpIvAIAABjGxKzGEbOgDOIVAADACCJmNY6YBUNDvAIAABjBxKzGOdCY1dnZmXe+851Zv359DjrooMyaNSu33nprDj/88L1e+8ADD+R973tftmzZknq9nhtvvDHnnntuNmzYkPPPPz+9vb3p7e3NvHnzsnLlyrzqVa/Kb37zm5xwwgnZunVrI9/+qFCrCjttsKBZmkm8AgAAGEXErMZ5uZg1ceLEtLa++CP4u9/97px55pmp1Wr57Gc/m3e/+935zne+s8f9nn322bz97W/Pl770pZx00knp6enJU089lSR59atfnR/84AcZN25ckuTKK6/MDTfckJtuuqlJ7xaaR7wCAAAYxcSswfPcc8/lnh+uyq48lGrMb1NreTZVVUutPjnpOTiHv/rUnHvOJZk0aVKWLl3a93Unnnhibr755r3u9+UvfzmLFi3KSSedlCRpbW3NjBkzkiRjx47te11vb2+eeeaZTJkyZY+vv+6663LHHXdk+/btueWWW/b4njCciFcAAAD0EbP2X1VV+e7d/5jnWtbkxLc+k4PGj/mDV3Qm2ZInHv/33Pjf/jHHzXt3znvHxWlpaUmS3HLLLTnrrLP2uu/69evT0dGRt73tbXnsscdy9NFH5zOf+UxfwOrq6sob3vCGPPLIIznmmGPyL//yL31fu23bthx//PG5/vrrc+edd2b58uXi1YGonr9KUdIsTfSHv6MAAACgzwsxa8aMGTniiCPy+te/PgsWLMicOXMyderUUf+Q8s7Oznz56/8pf3LK/8qfvePZfsLViw4+dEzO/A9b81Trf8knb3p/Ojs784lPfCIPPfRQPv7xj+/1+u7u7nz729/O5z//+axduzazZ8/OFVdc0ff59vb2rFu3Llu2bMncuXNz66239n1u/PjxOeecc5IkixYtyq9//etBfNfQXFZeAQAAsM+szHpRb29v/umOj2XpXz6c9rH7vjZk3rH1bJr2nZx7wWl5YtNz+e53v5uDDjpor9cddthhWbx4cQ499NAkybJly/pdPdXe3p53vetdueyyy/K3f/u3SXY/b+sFLS0t6e3t3d+3B8UQrwAAADhgozlmfft/fymLz9+/cPWCe7/9u/zs54/m7268da9nVb3gwgsvzG233ZYdO3Zk0qRJufPOO3PMMcckSTZu3Jhp06Zl/Pjxqdfr+drXvpajjz56IG+HftSqKrWqnL16Jc3STOIVAAAAg2a0xKxtT27LmCnfz+Sp+x+untjUnRUf35pXz2nL8iv/Jp/4+E0ZN25cfvzjH+fSSy/N2WefnbPPPjtz5szJtddem0WLFqW1tTWHHnpoVq5cmST52c9+lg9+8INJknq9nuOOOy633HLLoL5HKEWtqkZptgMAAKDpRkrM+ua3P5eTL/x+WltrA7rPw7+oMr33xpz1tvMHaTIGw44dOzJ58uScfOpH0tra8cpf0CQ9PZ259+6PZfv27Zk0adJQj9M0Vl4BAADQNCNlZVbV9vCAw1WSHDm/lnu+9q287a3npVYb+P0YZPXnr1KUNEsTiVcAAAAMmeEYs7q7u9PS8dtBu19PtqSrqytjx44dtHvCSCJeAQAAUIzhELO2bduWVx3cmWRwVkrVWp5OvT5Kl9TAPhCvAAAAKNZwiFmDQbwqk9MGyyBeAQAAMGyUELOmTZuWnzzckWTXoNyv6p2Y1lY/nsNL8bsDAACAYWsoYlZbW1t6O2ckeWxQ7teaWZ53BS9DvAIAAGDEaFbMqnUdmZ7uR9PaNrDnXv16fZWj55854HlokOr5qxQlzdJE4hUAAAAjVqNi1hvfcGHu++59OenMrgHN9+D9f5Trrn7bgO4BI514BQAAwKgxWDFr2tRpqW9/c7Y/+e1MnjrmgGZ54N9ac9IJf5ODDjrogL4eRgvxCgAAgFFrIDHrjD/7y3z5fz6Ut/7Vw2kfu38Ba9PGKs88elresvycwXgbNEpV7b5KUdIsTSReAQAAwPP2J2a1tLTkgrd9JKu+9J9z0jn/N9Nm7tvzr365bky2PfTnuXr5p5wyCPvA7xIAAAB4CfsSs/7i3Buy5vtfyb+PWZMTT386B43vfxXWE4/X85Pvzcxx8y7Lf7xyWdra2pr8bmB4Eq8AAABgH71UzDrssGvyxBPvyrfu/B95tueXqVqeSK3l2VRVLbX65KTn4Bx+yKn58PK/ysSJE4f6bbCPatXuqxQlzdJM4hUAAAAcoD+MWa997d+lu7s7XV1d6e7uTr1ez7hx49LR0ZExYw7swe4w2olXAAAAMEhqtVra29vT3t4+1KPAiCFeAQAAAPTHaYNFsGYRAAAAgGKJVwAAAAAUy7ZBAAAAgH7U6ruvUpQ0SzNZeQUAAABAscQrAAAAAIpl2yAAAABAf5w2WAQrrwAAAAAolngFAAAAQLFsGwQAAADoT/X8VYqSZmkiK68AAAAAKJZ4BQAAAECxbBsEAAAA6EetqlIr6IS/kmZpJiuvAAAAACiWeAUAAABAsWwbBAAAAOhPVe2+SlHSLE1k5RUAAAAAxRKvAAAAACiWbYMAAAAA/amS1Id6iN8zOncNWnkFAAAAQLnEKwAAAACKZdsgAAAAQD9qVZVaQSf8lTRLM1l5BQAAAECxxCsAAAAAimXbIAAAAEB/qiQlbdUraJRmsvIKAAAAgGKJVwAAAAAUy7ZBAAAAgP5UVWHbBguapYmsvAIAAACgWOIVAAAAAMWybRAAAACgP/UktaEe4vfUh3qAoWHlFQAAAADFEq8AAAAAKJZtgwAAAAD9qFVVagWd8FfSLM1k5RUAAAAAxRKvAAAAACiWbYMAAAAA/amq3VcpSpqliay8AgAAAKBY4hUAAAAAxbJtEAAAAKA/tg0WwcorAAAAAIolXgEAAABQLNsGAQAAAPpj22ARrLwCAAAAoFjiFQAAAADFsm0QAAAAoD/1JLWhHuL31Id6gKFh5RUAAAAAxRKvAAAAACiWbYMAAAAA/ahVVWoFnfBX0izNZOUVAAAAAMUSrwAAAABGqBUrVuSII45IR0dHjj/++Nx7770v+dq77747tVptr+uXv/xlEyfem22DAAAAAP2pqt1XKfZzlq9+9au58sors2LFirzpTW/K5z//+Zx55plZv3595syZ85Jf96tf/SqTJk3q+/WMGTMOeOTBYOUVAAAAwAh000035a//+q9z6aWXZv78+bn55psze/bsfO5zn3vZrzv44IMza9asvqulpaVJE/dPvAIAAAAYRnbs2LHHtWvXrr1e09XVlZ/85Cc5/fTT9/j46aefnh/+8Icve/+FCxfmkEMOyZIlS/K9731vUGc/EOIVAAAAQH/qVXlXktmzZ2fy5Ml914033rjX6Fu3bk1vb29mzpy5x8dnzpyZzZs39/t2DznkkKxcuTKrVq3K17/+9cydOzdLlizJPffcM/h/b/eDZ14BAAAADCOPPvroHs+kGjt27Eu+tlar7fHrqqr2+tgL5s6dm7lz5/b9etGiRXn00Ufz6U9/OqeccsoApz5wVl4BAAAADCOTJk3a4+ovXk2fPj0tLS17rbJ64okn9lqN9XJOPPHEPPTQQwOeeSDEKwAAAID+vHDaYEnXPmpvb8/xxx+fu+66a4+P33XXXXnjG9+4z/dZu3ZtDjnkkH1+fSPYNggAAAAwAl111VW5+OKLc8IJJ2TRokVZuXJlNm7cmMsvvzxJcu211+bxxx/P7bffniS5+eabc/jhh2fBggXp6urKP/zDP2TVqlVZtWrVUL4N8QoAAABgJLrooouybdu2XH/99dm0aVNe97rXZfXq1TnssMOSJJs2bcrGjRv7Xt/V1ZWrr746jz/+eMaNG5cFCxbkjjvuyNKlS4fqLSRJalW1H2vOAAAAAEa4HTt2ZPLkyfnzI9+f1jEv/TD0Zuup78p3H74l27dv3+OB7SOdZ14BAAAAUCzxCgAAAIBieeYVAAAAQH/284S/hitpliay8goAAACAYolXAAAAABTLtkEAAACA/tSrJAVt1asXNEsTWXkFAAAAQLHEKwAAAACKZdsgAAAAQH+q+u6rFCXN0kRWXgEAAABQLPEKAAAAgGLZNggAAADQn6rafZWipFmayMorAAAAAIolXgEAAABQLNsGAQAAAPpTr5IUtFWvXtAsTWTlFQAAAADFEq8AAAAAKJZtgwAAAAD9cdpgEay8AgAAAKBY4hUAAAAAxbJtEAAAAKA/VcraqlfQKM1k5RUAAAAAxRKvAAAAACiWbYMAAAAA/XHaYBGsvAIAAACgWOIVAAAAAMWybRAAAACgP/V6kvpQT/GiekGzNJGVVwAAAAAUS7wCAAAAoFi2DQIAAAD0x2mDRbDyCgAAAIBiiVcAAAAAFMu2QQAAAID+2DZYBCuvAAAAACiWeAUAAABAsWwbBAAAAOhPvUpS0Fa9ekGzNJGVVwAAAAAUS7wCAAAAoFi2DQIAAAD0o6rqqar6UI/Rp6RZmsnKKwAAAACKJV4BAAAAUCzbBgEAAAD6U1VlnfBXFTRLE1l5BQAAAECxxCsAAAAAimXbIAAAAEB/qipJQVv1bBsEAAAAgLKIVwAAAAAUy7ZBAAAAgP7U60mtPtRTvKgqaJYmsvIKAAAAgGKJVwAAAAAUy7ZBAAAAgP44bbAIVl4BAAAAUCzxCgAAAIBi2TYIAAAA0I+qXk9V0GmDldMGAQAAAKAs4hUAAAAAxbJtEAAAAKA/ThssgpVXAAAAABRLvAIAAACgWLYNAgAAAPSnXiW1grbq2TYIAAAAAGURrwAAAAAolm2DAAAAAP2pqiT1oZ7iRbYNAgAAAEBZxCsAAAAAimXbIAAAAEA/qnqVqqDTBivbBgEAAACgLOIVAAAAAMWybRAAAACgP1U9ZZ02WNAsTWTlFQAAAADFEq8AAAAAKJZtgwAAAAD9cNpgGay8AgAAAKBY4hUAAAAAxbJtEAAAAKA/ThssgngFAAAA0I+edCcFPWaqJ91DPcKQEK8AAAAAfk97e3tmzZqVH2xePdSj7GXWrFlpb28f6jGaqlaN1kfVAwAAALyEzs7OdHV1DfUYe2lvb09HR8dQj9FU4hUAAAAAxXLaIAAAAADFEq8AAAAAKJZ4BQAAAECxxCsAAAAAiiVeAQAAAFAs8QoAAACAYolXAAAAABRLvAIAAACgWOIVAAAAAMUSrwAAAAAolngFAAAAQLHEKwAAAACKJV4BAAAAUCzxCgAAAIBiiVcAAAAAFEu8AgAAAKBY4hUAAAAAxRKvAAAAACiWeAUAAABAscQrAAAAAIolXgEAAABQLPEKAAAAgGKJVwAAAAAUS7wCAAAAoFjiFQAAAADFEq8AAAAAKJZ4BQAAAECxxCsAAAAAiiVeAQAAAFAs8QoAAACAYolXAAAAABRLvAIAAACgWOIVAAAAAMUSrwAAAAAolngFAAAAQLHEKwAAAACKJV4BAAAAUCzxCgAAAIBiiVcAAAAAFEu8AgAAAKBY4hUAAAAAxRKvAAAAACiWeAUAAABAscQrAAAAAIolXgEAAABQLPEKAAAAgGKJVwAAAAAUS7wCAAAAoFjiFQAAAADFEq8AAAAAKJZ4BQAAAECxxCsAAAAAiiVeAQAAAFAs8QoAAACAYolXAAAAABRLvAIAAACgWOIVAAAAAMUSrwAAAAAolngFAAAAQLHEKwAAAACKJV4BAAAAUCzxCgAAAIBiiVcAAAAAFEu8AgAAAKBY4hUAAAAAxRKvAAAAACiWeAUAAABAscQrAAAAAIolXgEAAABQLPEKAAAAgGKJVwAAAAAUS7wCAAAAoFjiFQAAAADFEq8AAAAAKJZ4BQAAAECx/j+eYrSa+ft2zgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax, nodes = ncd.plot_ttr_network(\n", " dfROHR,\n", " dn_col=\"DN\",\n", " fk_ki_col='fkKI',\n", " fk_kk_col='fkKK',\n", " geometry_col=\"geometry\",\n", " ttr_norm=\"percentile\", ttr_percentiles=(5, 95),\n", " linewidth_range=(7, 15),\n", " node_size=200,\n", " highlight_keys=[5136506604482101815], # source tk \n", " highlight_marker_size=250,\n", " show_values=True,\n", " dt_col='dt',\n", " show_edge_dt=True,\n", " annotation_fmt=\"{:.2f}\"\n", ")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "ee670cef", "metadata": {}, "source": [ "We can observe that due to the inserted connection between the upper and lower branch the travel time in the upper branch changes, because water flows from the lower to the upper branch." ] }, { "cell_type": "markdown", "id": "85bf151f", "metadata": {}, "source": [ "Why does the node in the upper branch that is connected to the lower branch have a water age of 2.39 h?\n", "This node receives water from two pipes, therefore its water age is the water age coming from both pipes weighted by the volume flow." ] }, { "cell_type": "markdown", "id": "d535ff36", "metadata": {}, "source": [ "Example Calculation:" ] }, { "cell_type": "code", "execution_count": 73, "id": "a04bf687", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 93.552284\n", "1 100.000000\n", "2 100.000000\n", "3 306.447723\n", "4 306.447723\n", "5 100.000000\n", "6 100.000000\n", "7 93.552284\n", "8 106.447716\n", "Name: QMAVAbs, dtype: float64" ] }, "execution_count": 73, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dfROHR['QMAVAbs']" ] }, { "cell_type": "markdown", "id": "9948c3b6", "metadata": {}, "source": [ "The pipe reaching the node from the left has a volume flow of 94 m^3/h\n", "The pipe reaching the node from the bottom has a volume flow of 106 m^3/h" ] }, { "cell_type": "markdown", "id": "78f42c2b", "metadata": {}, "source": [ "Fluid age = (94^3/h * (1.70h+0.52h) + 106^3/h * (1.04h+1.49h)) / (94^3/h + 106^3/h) = 2.39h (approx due to rounding error)" ] }, { "cell_type": "markdown", "id": "155bb643", "metadata": {}, "source": [ "This approach also works for nodes not supplied 100% by one source." ] }, { "cell_type": "markdown", "id": "e7db70c3", "metadata": {}, "source": [ "## Comparision: Travel Time Matrix" ] }, { "cell_type": "markdown", "id": "906dea8c", "metadata": {}, "source": [ "### Preparing Data" ] }, { "cell_type": "code", "execution_count": 74, "id": "370604c2", "metadata": {}, "outputs": [], "source": [ "dfROHR=dfROHR.rename(columns={'fkKI': 'tki', 'fkKK': 'tkk'})" ] }, { "cell_type": "markdown", "id": "4b957334", "metadata": {}, "source": [ "### Algorithm Implmentation" ] }, { "cell_type": "markdown", "id": "aadce5f0", "metadata": {}, "source": [ "We reuse the algorithm already implemented" ] }, { "cell_type": "markdown", "id": "b4f85376", "metadata": {}, "source": [ "### Calculation" ] }, { "cell_type": "code", "execution_count": 75, "id": "0f689cfe", "metadata": {}, "outputs": [], "source": [ "TMat, map_nodes_tk_ind = setup_travelTimeMatrix(dfROHR)" ] }, { "cell_type": "code", "execution_count": 76, "id": "5d87a40b", "metadata": {}, "outputs": [], "source": [ "TMat=TMat/3600" ] }, { "cell_type": "code", "execution_count": 77, "id": "0c6eb0ad", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0. , 1.98, 2.72, 1.02, 0. , 2.5 , 0. , 0. , 0.49],\n", " [0. , 0. , 1.04, 0. , 0. , 0.52, 0. , 0. , 0. ],\n", " [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ],\n", " [0. , 0. , 1.7 , 0. , 0. , 0. , 0. , 0. , 0. ],\n", " [0. , 1.98, 2.72, 1.02, 0. , 2.5 , 0. , 0. , 0.49],\n", " [0. , 0. , 0.52, 0. , 0. , 0. , 0. , 0. , 0. ],\n", " [0. , 1.59, 2.63, 0. , 0. , 2.11, 0. , 0. , 0. ],\n", " [0. , 1.59, 2.63, 0. , 0. , 2.11, 0. , 0. , 0. ],\n", " [0. , 1.49, 2.22, 0.52, 0. , 2.01, 0. , 0. , 0. ]])" ] }, "execution_count": 77, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.set_printoptions(linewidth=200)\n", "TMat.round(2)" ] }, { "cell_type": "markdown", "id": "51526ec4", "metadata": {}, "source": [ "### Plotting" ] }, { "cell_type": "code", "execution_count": 78, "id": "755c1b67", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABK8AAAOsCAYAAACMN5XEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACUu0lEQVR4nOzdd3hUVcLH8d9kkpCeECCF3iF0EBWUKgoCUgQEla6gLKj4uqyKDZQVZS0rLovIIiDYFXRRkJUuCiooIIggLQQCCU0SUklm7vsHZiQkQMqUO8n38zzzvGTmzplz8d1Avpxzr8UwDEMAAAAAAACACfl4egIAAAAAAADA5RCvAAAAAAAAYFrEKwAAAAAAAJgW8QoAAAAAAACmRbwCAAAAAACAaRGvAAAAAAAAYFrEKwAAAAAAAJgW8QoAAAAAAACmRbwCAAAAAACAaRGvAAAoAovFUqTH+vXrPT3VfBYuXCiLxaL4+PjLHlOccxs1apRq167ttvlfTd755T1OnTrleK1Lly5q1qzZVcc4e/ZsvjFefvllV04ZAAAAxeTr6QkAAOANNm/enO/radOmad26dVq7dm2+55s0aeLOaTlFcc6tRo0amjhxojunVyRLly5VbGysIiIiiv3e0NBQbd68WcePH9eAAQOcPzkAAACUCvEKAIAiaNeuXb6vq1SpIh8fnwLPXyojI0NBQUGunFqpFefcwsLC3DWtYmndunWJV4RZrVa1a9fuiqvTAAAA4DlsGwQAwEnytql9/fXXuuGGGxQUFKR77rlHkvThhx+qe/fuio2NVWBgoOLi4vT4448rPT3d8f7XXntNFotF+/fvLzD2Y489Jn9//3zb4lavXq1u3bopLCxMQUFBuvHGG7VmzRqXnmNh2wYtFoseeOABLViwQI0aNVJgYKDatm2r7777ToZh6KWXXlKdOnUUEhKim266qdDzc+W5bNmyRR07dlRQUJDq1q2rF198UXa73SljAwAAwPWIVwAAONHx48c1bNgw3X333VqxYoXGjx8vSdq3b5969eqlt956SytXrtTDDz+sjz76SH369HG8d9iwYfL399fChQvzjWmz2fTOO++oT58+qly5siTpnXfeUffu3RUWFqa3335bH330kSIjI9WjRw+XB6zCfPHFF5o3b55efPFFvf/++zp37px69+6tv/71r/r22281a9YszZ07V7t379bAgQNlGIbjva48l6SkJA0dOlTDhg3TsmXL1LNnT02ePFnvvPNOaU8ZAAAAbsK2QQAAnOjMmTP6+OOPddNNN+V7/qmnnnL82jAM3XjjjYqLi1Pnzp31888/q0WLFqpcubJuu+02vf3223ruuefk43Ph35i++uorHTt2TKNHj5Z0YSvixIkTddttt+nTTz91jNurVy+1adNGTzzxhL7//ns3nO2fsrOz9dVXXyk4OFjShdVY/fv317p16/TTTz/JYrFIkk6ePKmHH35Yu3btUvPmzV1+LqdPn9aKFSt03XXXSZJuvvlmrV+/Xu+9955GjBhRijMGAACAu7DyCgAAJ6pYsWKBcCVJBw8e1N13362YmBhZrVb5+fmpc+fOkqRff/3Vcdzo0aN19OhRrV692vHcggULFBMTo549e0qSNm3apDNnzmjkyJHKzc11POx2u2699VZt2bIl33ZEd+jatasjXElSXFycJKlnz56OcHXx84cPH5bk+nOJiYlxhKs8LVq0cHw+AAAAzI+VVwAAOFFsbGyB59LS0tSxY0cFBATo73//uxo2bKigoCAdOXJEAwYMUGZmpuPYnj17KjY2VgsWLFD37t31+++/a9myZZo4caKsVqskKTk5WZI0aNCgy87jzJkz+WKSq0VGRub72t/f/4rPZ2VlSXL9uVSqVKnAcxUqVMj3ew4AAABzI14BAOBEF68yyrN27VodO3ZM69evd6y2kqSzZ88WONZqtWr48OF6/fXXdfbsWb333nvKzs52bBmU5Lju1b/+9a/L3u0wOjq6lGfiHmXpXAAAAOAaxCsAAFwsL2hVqFAh3/NvvvlmocePHj1a//jHP/T+++9r4cKFat++vRo3bux4/cYbb1RERIR2796tBx54wHUTd4OydC4AAABwDeIVAAAudsMNN6hixYoaN26cpkyZIj8/P7377rvasWNHocc3btxY7du31wsvvKAjR45o7ty5+V4PCQnRv/71L40cOVJnzpzRoEGDFBUVpZMnT2rHjh06efKk3njjDXecWqmVpXMBAACAa3DBdgAAXKxSpUpavny5goKCNGzYMN1zzz0KCQnRhx9+eNn3jB49WkeOHFFgYKCGDBlS4PVhw4Zp3bp1SktL0/3336+bb75ZEydO1E8//aRu3bq58nScriydCwAAAJzPYhiG4elJAAAAlMTChQs1evRo7d+/X7Vq1ZKvb8kWlefm5urw4cOqX7++XnrpJU2aNMnJMwUAAEBJsW0QAAB4vfr160uSTp486bgIfFGdPXtWFStWdMW0AAAA4ASsvAIAAF7r9OnTOnTokOPrVq1aFXv1lc1m07Zt2xxf16hRgzscAgAAmAjxCgAAAAAAAKbFBdsBAAAAAABgWsQrAAAAAAAAmBbxCgAAAAAAAKZFvAIAAAAAAIBpEa8AAAAAAABgWsQrAAAAAAAAmBbxCgAAAAAAAKZFvAIAAAAAAIBpEa8AAAAAAABgWsQrAAAAAAAAmJavpycAAAAAACi/bDabcnJyPD2NcsfPz09Wq9XT0wCKhHgFAAAAAHA7wzCUlJSks2fPenoq5VZERIRiYmJksVg8PRXgiohXAAAAAAC3ywtXUVFRCgoKIqC4kWEYysjI0IkTJyRJsbGxHp4RcGXEKwAAAACAW9lsNke4qlSpkqenUy4FBgZKkk6cOKGoqCi2EMLUuGA7AAAAAMCt8q5xFRQU5OGZlG95v/9ccwxmR7wCAAAAAHiEM7YKGoahzZs3yzAMJ8yofGGrJrwF8QoAAAAA4LU2b96sG264QZs3b/b0VAC4CPEKAAAAAOC1PvnkE0nSkiVLPDwTAK5CvAIAAAAAeCXDMLRkyRI1bNhQS5YsccvWwRMnTuj+++9XzZo1VaFCBcXExKhHjx6s/AJciLsNAgAAAAC80tatW5WQkKCNGzeqY8eO+vHHH9W2bVuXfubAgQOVk5Ojt99+W3Xr1lVycrLWrFmjM2fOuOwzz58/L39/f5eND5gdK68AAAAAAF5pyZIluu6669ShQwdde+21Lt86ePbsWX3zzTeaMWOGunbtqlq1aum6667T5MmT1bt3b0lSQkKC+vXrp5CQEIWFhWnw4MFKTk52jDFq1Cj1798/37gPP/ywunTp4vi6S5cueuCBB/TII4+ocuXKuuWWWyRJv/zyi3r37q2wsDCFhoaqY8eOOnDggON9CxYsUFxcnAICAtS4cWPNnj3bdb8ZgBux8goAAAAAYGpTpkzRr7/+WuD5devW6W9/+5ukCyuiXn755XwxJ09cXJyeffbZUs8jJCREISEh+uyzz9SuXTtVqFAh3+uGYah///4KDg7Whg0blJubq/Hjx2vIkCFav359sT7r7bff1l/+8hd9++23MgxDiYmJ6tSpk7p06aK1a9cqLCxM3377rXJzcyVJ//nPfzRlyhTNmjVLrVu31rZt2zR27FgFBwdr5MiRpT53wJOIVwAAAAAAU0tLS9PHH3+s0NBQ3XXXXbJarZKku+++W6NGjZIkjR49WseOHVNOTo4kKTc3Vx988IHOnTunRx55xCnz8PX11cKFCzV27FjNmTNHbdq0UefOnXXnnXeqRYsWWr16tX7++WcdOnRINWrUkCQtXrxYTZs21ZYtW3TttdcW+bPq16+vf/zjH46vn3jiCYWHh+uDDz6Qn5+fJKlhw4aO16dNm6ZXXnlFAwYMkCTVqVNHu3fv1ptvvkm8gtcjXgEAAAAATO2VV15R+/btNXbsWO3Zs0fvvPOOIw7liYqK0syZMyVd2Lo3bNgwWa1WffLJJxo4cKDT5jJw4ED17t1bGzdu1ObNm7Vy5Ur94x//0Lx585SamqoaNWrkm1uTJk0UERGhX3/9tVjx6tJrd23fvl0dO3Z0hKuLnTx5UkeOHNG9996rsWPHOp7Pzc1VeHh4Cc4SMBeueQUAAAAAML1BgwZp+/btstlsatmypT799NNCj/v000/VqlUrGYahHTt2ODVc5QkICNAtt9yiZ555Rps2bdKoUaM0ZcoUGYYhi8VS4PiLn/fx8SlwV8S81WIXCw4Ozvd1YGDgZedjt9slXdg6uH37dsdj165d+u6774p9foDZEK8AAAAAAF6hVq1aWr9+vYYPH64BAwYUuMPfmTNnNGDAAI0YMULr1q1TzZo13TKvJk2aKD09XU2aNFFCQoKOHDnieG337t1KSUlRXFycJKlKlSo6fvx4vvdv3779qp/RokULbdy4sdDQFR0drWrVqungwYOqX79+vkedOnVKd3KACRCvAAAAAABew9fXV1FRUYqLi1NkZGS+1ypWrKjGjRsrKipKvr7Ov0rO6dOnddNNN+mdd95xXNvq448/1j/+8Q/169dPN998s1q0aKGhQ4fqp59+0g8//KARI0aoc+fOjm2AN910k7Zu3apFixZp3759mjJlinbt2nXVz37ggQeUmpqqO++8U1u3btW+ffu0ePFi7d27V5I0depUvfDCC5o5c6Z+++037dy5UwsWLNCrr77q9N8HwN2IVwAAAAAAr7JkyRINHDhQhmHojTfeUGxsrN544w1JF65JtWTJEpd8bkhIiK6//nr985//VKdOndSsWTM9/fTTGjt2rGbNmiWLxaLPPvtMFStWVKdOnXTzzTerbt26+vDDDx1j9OjRQ08//bQeffRRXXvttTp37pxGjBhx1c+uVKmS1q5dq7S0NHXu3FnXXHON/vOf/ziugTVmzBjNmzdPCxcuVPPmzdW5c2ctXLiQlVcoEyzGpZttAQAAAABwoaysLB06dEh16tRRQEBAsd578OBB1atXT2vWrNG//vUvrVy5UiNHjtTChQvVq1cvTZgwQTfffLMOHDigunXruugMyobS/HcA3ImVVwAAAAAAr7FkyRL5+flp5MiR2rdvn7Zs2aI5c+Zoy5Yt2rt3r0aNGiVfX18tXbrU01MF4CTEKwAAAACA11iyZIlycnJ022236YcfflCzZs0kSc2bN9eWLVt02223KTc312VbBwG4H/EKAAAAAOA1WrdurSVLluiNN95QUFBQvteCgoL0xhtvaMmSJWrVqpVnJgjA6bjmFQAAAADArbjWkjnw3wHegpVXAAAAAACPYC2FZ/H7D29BvAIAAAAAuJWfn58kKSMjw8MzKd/yfv/z/nsAZuXr6QkAAAAAAMoXq9WqiIgInThxQtKFa1VZLBYPz6r8MAxDGRkZOnHihCIiImS1Wj09JeCKuOYVAAAAAMDtDMNQUlKSzp496+mplFsRERGKiYkhHML0iFcAAAAAAI+x2WzKycnx9DTKHT8/P1ZcwWsQrwAAAAAAAGBaXLAdAAAAAAAApkW8AgAAAAAAgGkRrwAAAAAAAGBaxCsAAAAAAACYFvEKAAAAAAAApkW8AgAAAAAAgGkRrwAAAAAAAGBaxCsAAAAAAACYFvEKAAAAAAAApkW8AgAAAAAAgGkRrwAAAAAAAGBaxCsAAAAAAACYFvEKAAAAAAAApkW8AgAAAAAAgGkRrwAAAAAAAGBaxCsAAAAAAACYFvEKAAAAAAAApkW8AgAAAAAAgGkRrwAAAAAAAGBaxCsAAAAAAACYFvEKAAAAAAAApkW8AgAAAAAAgGkRrwAAAAAAAGBaxCsAAAAAAACYFvEKAAAAAAAApkW8AgAAAAAAgGkRrwAAAAAAAGBaxCsAAAAAAACYFvEKAAAAAAAApkW8AgAAAAAAgGkRrwAAAAAAAGBavp6eAAAAAAAAgNlkZWXp/Pnznp5GAf7+/goICPD0NNyKeAUAAAAAAHCRrKws1akVoqQTNk9PpYCYmBgdOnSoXAUs4hUAAAAAAMBFzp8/r6QTNh3+sbbCQs1zxaXUc3bVuiZe58+fJ14BAAAAAACUd2GhPgoLtXp6GuUe8QoAAAAAAKAQdhmyy+7paTjYZXh6Ch5hnrVvAAAAAAAAwCWIVwAAAAAAADAttg0CAAAAAAAUwmbYZTPRTj2bYZ4tjO7EyisAAAAAAACYFvEKAAAAAAAApsW2QQAAAAAAgEJcuNugefYNmmku7sTKKwAAAAAAAJgW8QoAAAAAAACmxbZBAAAAAACAQthll5nu72eu2bgPK68AAAAAAABgWsQrAAAAAAAAmBbbBgEAAAAAAAphMwzZDPPc4c9Mc3EnVl4BAAAAAADAtIhXAAAAAAAAMC22DQIAAAAAABTCLkN2mWernpnm4k6svAIAAAAAAIBpEa8AAAAAAABgWmwbBAAAAAAAKIRdhmwm2qrHtkEAAAAAAADAZIhXAAAAAAAAMC22DQIAAAAAABSCuw2aAyuvAAAAAAAAYFrEKwAAAAAAAJgW2wYBAAAAAAAKYTMM2QzzbNUz01zciZVXAAAAAAAAMC3iFQAAAAAAAEyLbYMAAAAAAACFsP/xMAszzcWdWHkFAAAAAAAA0yJeAQAAAAAAwLTYNggAAAAAAFAImwzZZJ47/JlpLu7EyisAAAAAAACYFvEKAAAAAAAApsW2QQAAAAAAgELYjAsPszDTXNyJlVcAAAAAAAAwLeIVAAAAAAAATIttgwAAAAAAAIWw//EwCzPNxZ1YeQUAAAAAAADTIl4BAAAAAADAtNg2CAAAAAAAUAi7LLLJ4ulpONhNNBd3YuUVAAAAAAAATIt4BQAAAAAAANNi2yAAAAAAAEAh7MaFh1mYaS7uxMorAAAAAAAAmBbxCgAAAAAAAKbFtkEAAAAAAIBC2Ex2t0EzzcWdWHkFAAAAAAAA0yJeAQAAAAAAwLTYNggAAAAAAFAItg2aAyuvAAAAAAAAYFrEKwAAAAAAAJgW2wYBAAAAAAAKYTcsshvm2apnprm4EyuvAAAAAAAAYFrEKwAAAAAAAJgW2wYBAAAAAAAKwd0GzYGVVwAAAAAAADAt4hUAAAAAAABMi22DAAAAAAAAhbDJRzYTrfuxeXoCHmKe/wIAAAAAAADAJYhXAAAAAAAAZdALL7yga6+9VqGhoYqKilL//v21d+/eK75n/fr1slgsBR579uxx06wLYtsgAAAAAABAIQzDIrthnjv8GcWcy4YNGzRhwgRde+21ys3N1ZNPPqnu3btr9+7dCg4OvuJ79+7dq7CwMMfXVapUKdGcnYF4BQAAAAAAUAatXLky39cLFixQVFSUfvzxR3Xq1OmK742KilJERIQLZ1d0bBsEAAAAAADwIqmpqfke2dnZRXpfSkqKJCkyMvKqx7Zu3VqxsbHq1q2b1q1bV6r5lhbxCgAAAAAAoBA2WUz3kKQaNWooPDzc8XjhhReuei6GYeiRRx5Rhw4d1KxZs8seFxsbq7lz52rJkiVaunSpGjVqpG7duunrr7922u9rcbFtEAAAAAAAwIscOXIk3/WoKlSocNX3PPDAA/r555/1zTffXPG4Ro0aqVGjRo6v27dvryNHjujll1++6lZDV2HlFQAAAAAAgBcJCwvL97havHrwwQe1bNkyrVu3TtWrVy/257Vr10779u0r6XRLjZVXAAAAAAAAhbAZPrIZ5ln3YzOKd7xhGHrwwQf16aefav369apTp06JPnfbtm2KjY0t0XudgXgFAAAAAABQBk2YMEHvvfee/vvf/yo0NFRJSUmSpPDwcAUGBkqSJk+erMTERC1atEiS9Nprr6l27dpq2rSpzp8/r3feeUdLlizRkiVLPHYexCsAAAAAAIAy6I033pAkdenSJd/zCxYs0KhRoyRJx48fV0JCguO18+fPa9KkSUpMTFRgYKCaNm2q5cuXq1evXu6adgEWwzCKuegMAAAAAACg7EpNTVV4eLiW/1xXwaFWT0/HIf2cTb1bHFRKSkq+C7aXdebZuAkAAAAAAABcgngFAAAAAAAA0+KaVwAAAAAAAIWwySKbLJ6ehoOZ5uJOrLwCAAAAAACAaRGvAAAAAAAAYFpsGwQAAAAAACiEzfCRzTDPuh+bYXh6Ch5hnv8CAAAAAAAAwCWIVwAAAAAAADAttg0CAAAAAAAUwi6L7Ca6w5+Z5uJOrLwCAAAAAACAaRGvAAAAAAAAYFpsGwQAAAAAACiEXT6ymWjdj13cbRAAAAAAAAAwFeIVAAAAAAAATIttgwAAAAAAAIWwGT6yGeZZ92Mz2DYIAAAAAAAAmArxCgAAAAAAAKbFtkEAAAAAAIBC2OUju4nW/XC3QQAAAAAAAMBkiFcAAAAAAAAwLbYNAgAAAAAAFMJmWGQzLJ6ehoOZ5uJOrLwCAAAAAACAaRGvAAAAAAAAYFpsGwQAAAAAACiETT6ymWjdj427DQIAAAAAAADmQrwCAAAAAACAabFtEAAAAAAAoBB2w0d2wzzrfuwG2wYBAAAAAAAAUyFeAQAAAAAAwLTYNggAAAAAAFAI7jZoDub5LwAAAAAAAABcgngFAAAAAAAA02LbIAAAAAAAQCHskmyGxdPTcLB7egIewsorAAAAAAAAmBbxCgAAAAAAAKbFtkEAAAAAAIBC2OUju4nW/ZhpLu5UPs8aAAAAAAAAXoF4BQAAAAAAANNi2yAAAAAAAEAhbIaPbIZ51v2YaS7uVD7PGgAAAAAAAF6BeAUAAAAAAADTYtsgAAAAAABAIeyyyC6Lp6fhYKa5uBMrrwAAAAAAAGBaxCsAAAAAAACYFtsGAQAAAAAACsHdBs2hfJ41AAAAAAAAvALxCgAAAAAAAKbFtkEAAAAAAIBC2OQjm4nW/ZhpLu5UPs8aAAAAAAAAXoF4BQAAAAAAANNi2yAAAAAAAEAh7IZFdsPi6Wk4mGku7sTKKwAAAAAAAJgW8QoAAAAAAACmxbZBAAAAAACAQthNdrdBu4nm4k7l86wBAAAAAADgFYhXAAAAAAAAMC22DQIAAAAAABTCbvjIbphn3Y+Z5uJO5fOsAQAAAAAA4BWIVwAAAAAAADAttg0CAAAAAAAUwiaLbLJ4ehoOZpqLO7HyCgAAAAAAAKZFvAIAAAAAAIBpsW0QAAAAAACgENxt0BzK51kDAAAAAADAKxCvAAAAAAAAYFrEKwAAAAAA3CgrK0v9+/dXw4YN1apVK916662Kj48vcNyiRYvUqlUrx6Ny5coaMGCAJGnnzp3q1KmTGjdurObNm+u+++5Tdna2JCk+Pl6VK1d25ymVWTb9ecdBczzKJ+IVAAAAAABOlpmZqSNHjujYsWOy2Qomh/vuu0979+7V9u3bddttt+m+++4rcMyIESO0fft2xyM2NlZDhw6VJAUEBGjWrFnas2ePtm/frpSUFL3yyisuPy/AE7hgOwAAAAAAThAff0DrVv1bVvseBfkfV5XIDNntFq0/Fa4co7r8g67Vbf0mKDQ0VL169XK8r127dnrttdeuOPYPP/yg5ORk9e3bV5LUoEEDx2tWq1XXXnut9uzZk+89zzzzjJYvX66UlBS9/vrr+T4T8CbEKwAAAAAASiE7O1vvvv2EqlX8SsN7Z8nHx3LRq4ak3yX9royMHfrv+/9VWPRo3dZ3rCyWC8e9/vrr6tOnzxU/46233tLw4cPl5+dX4LX09HTNmzdPM2bMcDx3+vRpXXPNNXruuee0cuVKTZw4kXhVAtxt0ByIVwAAAAAAlNDJkyf0wcKRGj1wn4KCfCRZLntsUJCP7up7WvFHXtYbr/+ocQ++oRdffFH79u3TnDlzLvu+jIwMffjhh9q0aVOB13JycjRkyBB1795d/fr1czwfHBzs+Lp9+/Y6cOBAyU8S8DDiFQAAAAAAJZCVlaX3F4zQ+GEH5ONT9BUxtWtIg7uv0ZBBnXUoIVOrV69WUFDQZY//5JNPFBcXpyZNmuR7PicnR4MHD1ZsbKxmzpyZ77WAgADHr61Wa6HX3QK8BfEKAAAAAIASeG/Rk7pn0P5ihas8b3+Yol92HdU/Xv6PIiIirnjs/Pnzde+99+Z7Ljc3V3feeaciIyM1d+5cxxZEOJfN8JHNRFv1zDQXdyqfZw0AAAAAQCkcOrRP1Sv+74+tgsVz9FiOJj17Stnn7frL+PFq1aqVrr/+eknSmDFjtGzZMsexBw4c0I8//qghQ4bkG+PDDz/U0qVLtXXrVrVu3VqtWrXShAkTSndSgElZDMMwPD0JAAAAAAC8ycJ5f9WwXssuuTh78R08bOho+ivqclNfJ80MzpCamqrw8HBN3nyrAkIKXiTfU7LScvRC+5VKSUlRWFiYp6fjNmwbBAAAAACgCHJzc5WWlqa0tDRlp/1Y6nAlSXVrWfTdl2slEa/MyJBF9itchN/dDBPNxZ2IVwAAAAAAFOLiWHXu3DllZGRIunCh9rCgk877IHui88YCyiDiFQAAAAAAunysutTZs2cVE5UtZ11G2mKkOmUcoKwiXgEAAAAAyqWixqpL+fj4yG535vat8rkVzBtwt0FzIF4BAAAAAMqFksaqS1WqVEm7twRLKtn7L2VYKjtlHKCsIl4BAAAAAMokZ8WqS1mtVqVnVZaUUOqxDMOQ4VOt9JMCyjDiFQAAAACgTHBVrCpMli1OmZnxCgws3TauzT/66tr2w5w0Kzib3bDIbphnW6eZ5uJOxCsAAAAAgFdyZ6y6VNvrB+mj5Rs1clDpPnPXweYad1tzJ80KKJuIVwAAAAAAr+DJWHWpkJAQZdh769CRj1SnRslWw3y5PkS39H7WyTMDyh7iFQAAAADAlMwUqwrTvsNAfbL8gO4dtFWRFYu3fXDbLj8p6C+qVy/ORbODM9jkI5vMc4c/M83FnYhXAAAAAABTMHus8vHxUUhIiEJCQhQaGqrg4GC1bPmu5r/5sK5vslrNGtuKNM6X60OkoL+od9+xLp4xUDYQrwAAAAAAHuGNscpiyb9F0Gq1auz4f2n92qV66+M5uun6Q6pTs+A2QsMw9N1Pftp5oJlu7jVV9es3cddpAF6PeAUAAAAAcIuyEKsup8tNA9S56+1av3aZNq9YK8N+VD46J8lHdlWSrNXVtt1QjevdwrUnAafiboPmQLwCAAAAALhEWY5VhbFYLOrarZ+kfs6bJADiFQAAAADAOcpbrALgHsQrAAAAAECJEKtQ1tnlI7uJ7vBnprm4E/EKAAAAAFAkxCoAnkC8AgAAAAAUilgFwAyIVwAAAAAAScQq4FI2wyKbie7wZ6a5uBPxCgAAAADKKWIVAG9AvAIAAACAcoJYBcAbEa8AAAAAoIwiVgGlYzcssptoq56Z5uJOxCsAAAAAKCOIVQDKIuIVAAAAAHgpYhWA8oB4BQAAAABeglgFuJdh+Mhu+Hh6Gg6GiebiTsQrAAAAADApYhUAEK8AAAAAwDSIVQBQEPEKAAAAADyEWAWYm00W2WSe/58301zciXgFAAAAAG5CrAKA4iNeAQAAAICLEKsAoPSIVwAAAADgJMQqoGyxG5LdMM//RuyGp2fgGcQrAAAAACghYhUAuB7xCgAAAACKiFgFAO5HvAIAAACAyyBWAeWb3fCR3fDx9DQczDQXdyJeAQAAAMAfiFUAYD7EKwAAAADlFrEKAMyPeAUAAACg3CBWASgOuyyyyzz/GzTTXNyJeAUAAADAq+zbt08jR47UqVOnFBERoYULF6pJkyaFHpubm6tTp06pU6dO8vf319tvv+14bdGiRfriiy9kGIZq1aqlKVOmKDQ0tMAYU6dOVVxcnIYMGeL0cyFWAcDVEa8AAAAAeJX7779f9913n0aNGqVPPvlE9957rzZv3iyp8JVV//znPxUXF6d9+/Y5xvjuu++0fPlyLViwQMHBwZo7d65mz56txx57zKVzJ1YBQPERrwAAAAB4jRMnTuinn37SV199JUnq16+fJkyYoM2bNysiIqLANsBt27YpISFBQ4cO1cyZMx3P79u3T61bt1ZwcLAkqWPHjho3btxl49WhQ4c0fvx4JSUlqV69epo+fbr8/PyuOl9iFeDdbIZFNsM8/5s101zciXgFAAAAwGscOnRIMTExSkpKcqysqly5snbt2qU2bdrkOzYzM1OvvPKKXn31VSUkJOR7LS4uTkuXLtXp06cVGRmpFStWKD09XSkpKQoPDy/wub/99ptmz54tPz8/jR07VmvWrNGtt95a4DhiFQA4H/EKAAAAgGldug1w3759ysnJUXJy8lXfO3PmTN1xxx2KiooqEK/atm2roUOH6uGHH5bValXXrl0lSb6+hf+I1LVrVwUEBEiSmjZtqqNHj0oiVgGAOxCvAAAAAJjG1e4GGB0dreTkZOXm5srX11eGYSg5OVkxMTEFxtq+fbu+/fZbzZs3T+fPn1dqaqoGDx6sjz76SJI0aNAgDRo0SJK0c+dORUdHO7YRXsrf31/ShVgVGBiooKAgNWrUiFgFlHF2w0d2w8fT03Aw01zciXgFAAAAwGOuFqsuFRkZqUaNGunLL79Unz59tGbNGsXGxqpq1aoFjv3ggw8cv966datmzpypxYsXO547deqUKleurKysLM2ZM0fDhw8vMIaPj4/8/PwUHh7uiFUVK1Z0rLYCALge8QoAAACA2xQ3VhXmiSee0LPPPuu4U+DUqVMdr02bNk2dOnVS586drzrOhAkTZBiGcnJy1KtXLw0ZMqTQbYBhYWEKDw8nVgGAh1gMwzA8PQkAAAAAZZMzYpUrcc0qAIVJTU1VeHi4Bq8ZLv9gf09Px+F8+nl91G2xUlJSFBYW5unpuA0rrwAAAAA4DbEKAOBsxCsAAAAAJUasAgC4GvEKAAAAQJERqwCUJ4Yssss830MME83FnYhXAAAAAC6LWAUA8DTiFQAAAAAHYhUAwGyIVwAAAEA5RqwCgMuzGxbZDfN8zzHTXNyJeAUAAACUI8QqAIC3IV4BAAAAZRixCgDg7YhXAAAAQBlCrAIA57EbPrIbPp6ehoOZ5uJOxCsAAADAixGrAABlHfEKAAAA8CLEKgBAeUO8AgAAAEyMWAUAnsPdBs2BeAUAAACYCLEKAID8iFcAAACABxGrAAC4MuIVAAAA4EbEKgDwHnZZZJd5vgeaaS7uRLwCAAAAXIhYBQBA6RCvAAAAACciVgEA4FzEKwAAAKAUiFUAUHZxt0FzIF4BAAAAxUCsAgDAvYhXAAAAwBUQqwAA8CziFQAAAHARYhUAIA/bBs2BeAUAAIByjVgFAIC5+Xh6AgAAAIA75ebm6uzZszp69Kh+/fVX7dixQwcOHFBycrIpwpWPj4/CwsJUtWpVNWrUSK1atVKDBg0UGxurkJAQwhUAoMheeOEFXXvttQoNDVVUVJT69++vvXv3XvV9GzZs0DXXXKOAgADVrVtXc+bMccNsL494BQBlyEMPPaTatWvLYrFo165dhR6zaNEitWrVyvGoXLmyBgwY4Hj9iy++UOPGjVW/fn0NHDhQaWlpkqT4+HhVrlzZLecBAHmysrLUv39/NWzYUK1atdKtt96q+Pj4AsetXbtW119/vZo0aaJmzZrpySeflGEYkqRt27bphhtuUP369dWwYUMNHjxYv/76q5KTk7V//35169bNzWeVH7EKAMwrb9ugmR7FsWHDBk2YMEHfffedVq1apdzcXHXv3l3p6emXfc+hQ4fUq1cvdezYUdu2bdMTTzyhhx56SEuWLCntb2eJWYy8P9UBAKZls9mUmJio9Zu+1faDvynXblewn786tW6r665pq4iICFmtVn399deqW7euOnTooC+++ELNmjW76tjNmzfX1KlTHaGqXr162rBhgxo3bqwHHnhAoaGheuGFFxQfH6+2bdvq1KlTbjhjAOXFyZMntfH79Tpy8pAkqWJIJXW4pqvq1Kkji8WirKwsrV27Vj179pTFYtGsWbO0bNkyffXVV/nG2bZtm8LDw1W3bl2lpaXp5ptv1tChQ3XzzTdrz549ys7OVoMGDWSz2fTUU0+pQYMGuueee3Ts2DENHz5ca9ascds5sw0QAMwvNTVV4eHh6vHlffIL9vf0dBxy0s/rfz3nKiUlRWFhYcV+/8mTJxUVFaUNGzaoU6dOhR7z2GOPadmyZfr1118dz40bN047duzQ5s2bSzz30uCaVwBgYpmZmVqxZpXe/for7TUylFYjUtY6FWWxWGTk2vT+9uWq9OWHah5YUY+NGKuOHTsW6wegH374QcnJyerbt68k6csvv1Tbtm3VuHFjSdL48ePVq1cvvfDCC473PPPMM1q+fLlSUlL0+uuvq1evXs49aQBlnmEY+vTLT7Rx70qdDUxQZBM/BdWqIEk6lpGrrze+L+vHFdU8ur3uH/pgvu8z7dq102uvvZZvvNzcXNWpU0dpaWn69ddflZGRoZo1a2r37t264YYbVLNmTcexVqtVTZo0KbB6a86cOfrmm2+UlpamSZMmqUOHDk47X2IVAMDZUlNT831doUIFVahQ4arvS0lJkSRFRkZe9pjNmzere/fu+Z7r0aOH3nrrLeXk5MjPz68EMy4d4hUAmFBmZqaOHDmi6fPn6Lvg88ppU1VS/m/aFl+rrDVjdLam9LXdrh3zXtKQui3117F/KfLnvPXWWxo+fLjjD6CEhATVqlXL8Xrt2rWVmJgou90uSTp9+rSuueYaPffcc1q5cqUmTpxIvAJQLCdOJuuFt56SvWWiwm6uoBCF5HvdP8hXsW1CJeUqIX2t7n/hG/2lz2O6tvX1kqTXX39dvXv31tmzZy97gfVTp05p7dq1mjlzZoHPz8zM1GeffaYHH3zQ8VxKSooaN26scePGadOmTXr55ZdLFa+IVQBQdpj1boM1atTI9/yUKVM0derUK77XMAw98sgj6tChwxV3aCQlJSk6Ojrfc9HR0crNzdWpU6cUGxtbssmXAvEKAEwkMzNTx48f18mTJzV10Zvac011+QQFXPV9Fh8fpbatp3mJ8Tr58gtXPV6SMjIy9OGHH2rTpk35x7rCD1jBwcHq16+fJKl9+/Y6cOBAkT4LACTpSGKCpix8SFVvkyw+V//X4QrBfqp2u6E3Nk5VQuJo/bDxR/3888/697//fdnvP2lpaXrkkUc0fPhwxyrSPLm5uZo8ebLatWunLl26OJ4PDAx0fN2iRQslJiYW67yIVQAAdzty5Ei+bYNFWXX1wAMP6Oeff9Y333xz1WMv/XMs74pTnvrzjXgFACaQF61+//13SdI/P35He9rWkE/g1f8QuphRrbKWHT2p1LRzutolDT/55BPFxcWpSZMmjudq1qyptWvXOr6Oj49XtWrV5ONz4f4eAQF/hjSr1SqbzVas+QEov3JycvTc/Emq2q/4f/Gt1jFA0yc/pdS9hv7zn//k+150sfT0dD300EPq1KmThg0blu+13NxcPf7446pcubImTZqU7zV//z+vZeLj43PV723EKgCAp4WFhRXrmlcPPvigli1bpq+//lrVq1e/4rExMTFKSkrK99yJEyfk6+urSpUqlWi+pUW8AgAPujRaSdI3P23Vj1V8ih2u8tirV1FaTraOHDmi5s2bX/a4+fPn695778333K233qoJEyZoz549aty4sWbPnq0777yzRPMAgIu9+tZ0Vbw5QxZL8a+T8d2i/Tp28IS63NZBISEhhR6TkZGhBx98UO3atdOYMWPyvZa34iosLExPPvlksUMTsQoAyi9Dkl3m+Z5f3DvuGYahBx98UJ9++qnWr1+vOnXqXPU97du31+eff57vua+++kpt27b1yPWuJOIVAHhEYdEqzxd7fpL92lqFvOvqTs1fpvQff5UtLVODBt+hypGVtGLFCk2ZMkVdunRR165dJV1YZrxlyxbNmDFDu3btyjfG008/rZ49e8pms6lBgwZ6/vnntWvXLiUmJspmszmOz7vGzKXvh7kcPnxYTz75pM6ePavQ0FD9/e9/V7169Qoct2XLFo0fPz7fNc/eeecdBQQE6LffftPzzz+vM2fOyNfXVy1bttQTTzyRb7VKnieffFJNmzbV3Xff7dLzgnfJyMjQL2mbVCskqNjvTU3K1OqXdymiepBWffa1vllyu8LDwvX2229r2rRp6tSpkzp37qz3339fv/zyi7KysrR+/XpJUrdu3XTvvfdq1apVWrdunRo0aKChQ4dKklq2bKnHHnvssp8bFhZGrAIAeL0JEybovffe03//+1+FhoY6VlSFh4crMDBQkjR58mQlJiZq0aJFki7cWXDWrFl65JFHNHbsWG3evFlvvfWW3n//fY+dh8W42r4SAIDTXClaSdLBw/GavGutjIbVSv1Zlb/br38PG88PXOXcuHHj1Lt3b/Xp00erV6/Wu+++qwULFhQ4buvWrZo5c6YWL15c4LWEhARlZ2erQYMGstlseuqpp9SgQQPdc889BY6dOnWq4uLiNGTIEJecD7zTZ6s/Uk7X3fILLP2/m575NEz39H7ICbP6EyurAACXSk1NVXh4uG5ecb98g0u2I8IVctOztbrXm0pJSSnStsHL/Xm2YMECjRo1SpI0atQoxcfHO/7xR5I2bNig//u//9Mvv/yiqlWr6rHHHtO4ceOccQolwsorAHCDq0WrPBt/3iZ7gxinLEw+FeGv5ORkxcTEOGE0eKMzZ85oz549mjVrlqQLq1BeeuklHTt2TFWrVi3yODVr1nT82mq1qkmTJoqPj7/s8YcOHdL48eOVlJSkevXqafr06R5bYg5z+D03SRWdEK4kKd33TKnHIFYBAIrKrHcbLKqirFdauHBhgec6d+6sn376qVif5UrEKwBwoaJGqzwnzqfLYi3+tprC2GtGaevuXbqNeFVuJScnq0qVKvL1vfDHvcViUXR0tJKSkgqNV4cPH9bQoUNltVrVp08f3XHHHQWOyczM1GeffaYHH3zwsp/722+/afbs2fLz89PYsWO1Zs0a3Xrrrc47MXidDEuKKjrpeiH2kAylpaVd9tpXhSFWAQDg3YhXAOACxY1WeXKcOAdLYAWlZKQ5cUR4o6L+gN64cWOtWLFCISEhSk5O1sSJExUREaFbbrnFcUzeRa/btWunLl26XHasrl27Ou4G17RpUx09erRU5wDvZ/jY5Ky/dlqDL3yPvVq88vPzU3BwsCIjIxUREUGsAgDAixGvAMCJShqt8vg68U4mRnaOggMCnTYevE90dLSSk5OVm5srX19fGYZx2a2kF4eA6Oho9ejRQ9u2bXPEq9zcXD3++OOqXLmyJk2adMXPvfhC7larVTabzUlnBG9lMaxOG8ueJUccvZKcnBydPXtWZ8+eVYUKFRQaGupYeVXYzQYAACiMt28bLCuIVwDgBKWNVnkq+wXIsNtl8fEp/aSOnlSbZrdc/TiUWZGRkWrUqJG+/PJL9enTR2vWrFFsbGyhWwZPnTqlyMhI+fj4KD09XRs3blS/fv0k/bniKiwsTE8++SQrWFBsgfZQSU5aCZoSoNDQ0GK9JTs7W9nZ2Tp16pQkEbMAAPAyxCsAKAVnRas81zdqqi8Tvpdql/46VZVOZ6hG9epOmBW82RNPPKFnn31WCxYsUHBwsKZOnep4bdq0aerUqZM6d+6sNWvWaMmSJY6VUt26dVPfvn0lSatWrdK6devUoEEDDR06VJLUsmVLPfbYY544JXihUEtl2XJSZfUrfZgPyq1Y6jGIWQAAeBeLUZRLzwMA8nF2tLrYX9+ZoyPX1ynVGIbdrht/Pq2H7xjmpFkBQMn9fvZ3Lf5lhmp2LfpF1guTcjRT9Q93143XdnbSzApHzAIApKamKjw8XJ0+Hy/f4Aqeno5Dbnq2vu4zWykpKQoLC/P0dNyGlVcAUAyujFZ5bq7dWAuSjksxkSUeI3hHvIZ2u0MVKpjnD1oA5VfFiIoKPV1DuedPyde/5Ne/OvuNv9r37+jEmRWOlVkAAJgL8QoAisAd0SpPzw5d9P3bb+qXyuGy+Bb/hzzj1Fn1rVJf3W++RT7OuHYWAJTSjh07dOct9+iNZc+r7qCSxavEb9PVq/Voj3xfI2YBQPnFBdvNgZ9qAOAKMjMzdfDgQe3evdst4SrPo3cMV/Vvf5ORW7y7tBlnUtXhSI6eefD/CFcATCUwMFB9W4zQ4RUZxX7viW2ZamrrqgZ1GrpgZsWXF7Li4+O1c+dO7dq1S4cPH9bp06d1/vx5T08PAIAyh5VXAFAId660KkxQUJCev/s+vbLkXe2qGSyjaqWrvqfCLwnqERij56c8w3ZBAKZUv3ZD9fMdq8/eX6ToXjYFhl95xZI9166EFdlqF9NT7dp1cDxvtVpVtWpVpaWl6dy5c8rNzXX11K+IlVkAALgW8QoALuLpaHWxoKAgPT18rNZ8961W/bBLh8J9ZasTLR9/P8cxtrRMBe4/rka5FTSh92B169yFFVcATK129Tp6MPYpfb7uEyVk/6qgZtmKrBskH+uFbRCGYSg1OVO/b7UoMrumxnQdqpCQ/Bd6t1gsioqKUlRUlAzDUFZWls6dO0fMAgA4nWFYZJhoq56Z5uJOxCsAkLmi1aW6tbtR3drdqCNHj2rzrh1KyvxdNhmqYPFRnYpR6j1kgOLi4hQQEODpqQJAkVitVvW/eYgMw9Cve3fr1xU/K8OSJkOGfG0BahzdQK27XFOkyGOxWBQYGKjAwEBiFgAAZRTxCkC5ZuZodaka1aurRvXqjq8jIyMVGxtLtALgtSwWi5o0bqomjZs6dUxiFgAAZQvxCkC55E3R6lJEKwAoOmIWAKA07LLILvNs1TPTXNyJeAWgXCFaAUD5RswCAMD7EK8AlAtEKwBAYYhZAACYH/EKQJlGtAIAFAcxCwBwMbthkd1Ed/gz01zciXgFoEwiWgEAnIGYBQCA5xGvAJQpRCsAgCsRswAAcD/iFYAygWgFAPAEYhYAlG2GYZFhoq16ZpqLOxGvAHg1ohUAwEyIWQAAOB/xCoBXIloBALwBMQsAgNIjXgHwKkQrAIA3I2YBgHfhboPmQLwC4BWIVgCAsoiYBQDA1RGvAJga0QoAUJ4QswAAKIh4BcCUiFYAABCzAMDTuNugORCvAJgK0QoAgMsjZgEAyiPiFQBTIFoBAFB8xCwAQHlAvALgUUQrAACch5gFAM5lmOxug2wbBAA3IloBAOB6xCwAQFlAvALgVkQrAAA8h5gFAPBGxCsAbkG0AgDAfIhZAHBlhiTD8PQs/mSiqbgV8QqASxGtAADwHsQsAIAZEa8AuATRCgAA70fMAgCYAfEKgFMRrQAAKLuIWQDKG7ssssg8d/izm2gu7kS8AuAURCsAAMofYhYAwB2IVwBKhWgFAADyuCtmJSQkaOrUqTp79qxCQkI0depU1a1b97LHZ2dna9iwYQoICNDixYsdMWvRokVasWKFJKlhw4ZasGCBoqKiCrx/1KhRatu2rR544IFSzx0AUHzEKwAlQrQCAABX46qYNX36dN1+++3q06ePVq9erWnTpmnBggWXPX727Nlq3ry59u3b53juu+++0/LlyzV//nwFBwdr7ty5euCBB/TMM8+wMguAg2FYZBjm2apnprm4k4+nJwDAu2RmZurgwYPavXu314WryMhINW3aVHXq1CFcAQDgAXkxKyoqSnXr1lWLFi3UpEkT1ahRQxUrVpSv79X/bf3MmTPas2ePevbsKUnq1q2bjh07pmPHjhV6/LZt25SQkKBevXrle37fvn1q3bq1goODJUkdO3bUihUrHKuy4uPjtXPnTu3atUtpaWn66aefdNNNN6lhw4YaMGCAzp8/X8rfDQBAUbHyCkCRsNIKAAA4W0lWZiUnJ6tKlSqO0GWxWBQdHa2kpCRVrVo137GZmZl65ZVX9OqrryohISHfa3FxcVq6dKlOnz6tyMhIrVixQunp6UpJSVF4eLjjuLxrZv3444+aPXu2QkJCdO+992rhwoUaNWoUK7MAwA2IVwCuiGgFAADcpSgxK++4opg5c6buuOMORUVFFYhXbdu21dChQ/Xwww/LarWqa9euknTZ1V9du3ZVQECAcnNz1bBhQ23btk3XXHMNF4AHyji7YZHFRFv17CaaizsRrwAUimgFAAA8rbCYFRERoZMnTyo0NFSZmZnKyclRcnKyYmJiCrx/+/bt+vbbbzVv3jydP39eqampGjx4sD766CNJ0qBBgzRo0CBJ0s6dOxUdHe3YRnipi6OU1WqVzWaTxN0MAcAdiFcA8iFaAQAAs7JYLKpVq5batGmjTZs2aeTIkXr//fdVq1YtNW3atMA2ww8++MDx661bt2rmzJlavHix47lTp06pcuXKysrK0pw5czR8+PBSz5GYBQDOR7wCIIloBQAAvMebb76pUaNGafr06QoLC9OiRYtUt25dGYah0aNH66abblKHDh2uejfDCRMmyDAM5eTkqFevXhoyZIjT50rMArybYVx4mIWZ5uJOFsMor6cOQCJaAQBcb8eOHVcMCMXl6+urli1bOm08lF1FuQC8pxGzAHNKTU1VeHi4mn74N1mDKnh6Og62jGz9MuQlpaSkKCwszNPTcRtWXgHlFNEKAACUdSW5m6G7sTILAK6OeAWUM0QrAABQXhGzABSXYVhkmOgOf2aaizsRr4BygmgFAACQHzELALwD8Qoo44hWAAAARUPMAgBzIl4BZRTRCgAAoHSIWQDYNmgOxCugjCFaAQAAuAYxCwA8g3gFlBFEKwAAAPciZgGAexCvAC9HtAIAADAHYhZQ9tgNiywm2qpnN9Fc3Il4BXgpohUAAIC5EbMAwDmIV4CXIVoBAAB4J2IWAJQM8QrwEkQrAACAsoWYBZifYVx4mIWZ5uJOxCvA5IhWAAAA5QMxCwAKR7wCTIpoBQAAUL4RswDgAuIVYDJEKwAAABSGmAW434Vtg+a5wx/bBgF4FNEKAAAAxUHMAlBeEK8ADyNaAQAAwBmIWQDKKuIV4CFEKwAAALgSMQsoPcOwmGzboHnm4k7EK8DNiFYAAADwBGIWAG9FvALchGgFAAAAMyFmAfAWxCvAxYhWAAAA8AbELKAg44+HWZhpLu5EvAJchGgFAAAAb3almJUXtIhZANyBeAU4GdEKAAAAZRExC4CnEK8AJyFaAQAAoDwhZqE84G6D5kC8AkqJaAUAAAAQs4ojKytLd955p3bv3q2goCDFxMRozpw5ql27dr7jFi1apFdffdXx9dGjR9WpUyctXbpUO3fu1IQJE3TixAn5+fmpffv2+te//qUKFSooPj5ebdu2dZwn4O2IV0AJEa0AAACAyyuvMWvv3l36YdPHstgTZbGck2FIslSWb4U66t7zHkVGRkqS7rvvPvXs2VMWi0WzZs3Sfffdp6+++irfWCNGjNCIESMcXzdv3lxDhw6VJAUEBGjWrFlq0aKFbDab7r77br3yyit64oknSvi7AZgX8QooJqIVAAAAUHxlPWbt/PkHfbfxJTWuuUt335oriyX/9q7z5w2tXP6eTqVdq9sHT1evXr0cr7Vr106vvfbaFef2ww8/KDk5WX379pUkNWjQwPGa1WrVtddeqz179uR7zzPPPKPly5crJSVFr7/+er7PRBFxu0FTIF4BRUS0AgAAAJynrMQswzD04XvTFR38ke4dmPnHOwtel8jf36K+t6TJZlurj5b0Ve24x3Vjxz6SpNdff119+vS54lzeeustDR8+XH5+fgVeS09P17x58zRjxgzHc6dPn9Y111yj5557TitXrtTEiROJV/BaxCvgKohWAAAAgOt5a8xat2qOenf4SrVrFG0Mq9Wiu/qe1LpNT+vr9TZ9s2m39u3bpzlz5lz2PRkZGfrwww+1adOmAq/l5ORoyJAh6t69u/r16+d4Pjg42PF1+/btdeDAgWKcKWAuxCvgMohWAAAAgOd4Q8z6bvMKdWi5qsjh6mJdb8jQiIcmaufeCG3YsEFBQUGXPfaTTz5RXFycmjRpku/5nJwcDR48WLGxsZo5c2a+1y7+WcBqtcpmsxV/kpBMdrdBmWkubkS8Ai5BtAIAAADMx2wxKzs7W+dTPlbLJiW7CNE/5/yu3XvOacTd7RQREXHFY+fPn697770333O5ubm68847FRkZqblz5xa4xhZQlhCvgD+MHz9ey5YtU2Jioj744APVr1+/0OO++OILvffee46vk5OT1aZNG7300kuSpI0bN+q1116TzWZTgwYN9Oyzzxb6ryhTp05VXFychgwZUuq5E60AAABQ3ng6Zv3w3Wca2feMJGux33v0WI4mPXtKdWv5afacZZq/uIlCQkL1/fffa8yYMerbt6/jwuwHDhzQjz/+qM8//zzfGB9++KGWLl2qFi1aqHXr1pKkG2+8Uf/+979LfW6A2RCvUO7lrbRq3bq1brvtNo0ZM+aKx99222267bbbHF8PGTJEt956q6QLe9GnTZumuXPnqnbt2poxY4bmz5+vBx54wCVzJ1oBAAAAF7g7ZlltOxQeVvxwJUnVq/rJdvzC3QLtdkMffDVQw0ZNkyTNmzcv37H16tXTuXPnCowxdOhQDR06tNDxa9eu7bgulySFhITIMMrpbepKyTAuPMzCTHNxJ+IVyq1Ltwe2adOm2GPs2rVLZ86cUefOnSVJmzZtUlxcnGrXri1JuuOOOzRx4sTLxqtDhw5p/PjxSkpKUr169TR9+vRC7x5yKaIVAAAAcGWujFl2u13BFU46ZZ4+PhZZ7AlOGQsoq4hXKHeceU2r//73v+rVq5d8fS/8TykpKUmxsbGO16tWraoTJ07IbrfLx8enwPt/++03zZ49W35+fho7dqzWrFnjWMVVGKIVAAAAUDLOjFlnzpxR9Zhzkpx0nSn7CeeMA5RRxCuUG86+EHtWVpZWrVql+fPn53u+OBdK7Nq1qyNENW3aVEePHi30OKIVAAAA4FyliVk5OTkKrWDIafFKdieNA2czTHa3QTPNxZ2IVyjzXHX3wNWrV6tOnTqqW7eu47mYmBht2bLF8fWxY8cUFRVV6KorSfL393f8urDb1xKtAAAAAPcoTswKDw9X0j5/Sc65hpahgjd4AvAn4hXKLFdFqzzLli1Tv3798j3Xvn17zZgxQ/Hx8apdu7Y+/vhjde/evdhjE60AAAAAz7pazNr9YyVJyc75MJ/qzhkHKKOIVyhzShqtZsyYoQ0bNuj06dOaMGGCAgMD9dlnn0mSpk2bpk6dOjkuzH706FHt2bNH//znP/ONERwcrKeeekp//etfZbPZVL9+fU2dOrXIcwgMDFTTpk2JVgAAAIDJXBqzNgS2kGF8VazLhhTmeLJdlaKvd9Is4XSG5cLDLMw0FzeyGNwvE2WEq1dauRIrrQAAZdmOHTucent6X19ftWzZ0mnjAUBJ7N69Xb8fukvtr7Fd/eAreHtpNY24f7WsVquTZgZnSE1NVXh4uGq/9bR8gszzc5o9I0vx905TSkqKwsLCPD0dt2HlFbwe0QoAAACAuzVp0kpvrL5BbVt8LT+/kq2GOZQgVal+N+EKuAriFbwW0QoAAACAJ9098lUtXNBXY+88Xuz3Zmba9eU3N2jC/41xwczgLIZx4WEWZpqLOxGv4HWIVgAAAADMIDw8XLf0fVPzP75fIwcck9VatBVYZ1PsWrysjcY99J9SXzMLKA+IV/AaRCsAAAAAZlO3bmOF371U8955RDe2/E7NGl9+aYzdbmjVxiCdzrxdE/7vKfn68iM5UBT8LwWmR7QCAAAAYGaVKlXSXya+rc2bVmvBp++qgs9vqlP9pKpG5chml/bFB+nE7zGy+7RQ1+4TVLt2fU9PGUVl/PEwCzPNxY2IVzAtohUAAAAAb9L+hpvV/oabZRiGDh48qMRjB2X19Vfbm5qoSpUqnp4e4LWIVzAdohUAAAAAb2axWFSvXj3Vq1fP01MBygTiFUyDaAUAAAAAMBPDsMgwzHNRfTPNxZ2IV/A4ohUAAAAAALgc4hU8hmgFAAAAAACuhngFtyNaAQAAAAC8Rjm9w5+ZEK/gNkQrAAAAAABQXMQruBzRCgAAAAAAlBTxCi5DtAIAAAAAeDPuNmgOxCs4HdEKAAAAAAA4C/EKTkO0AgAAAAAAzka8QqkRrQAAAAAAZZIhc91t0ExzcSPiFUqMaAUAAAAAAFyNeIViI1oBAAAAAAB3IV6hyIhWAAAAAIDyxfLHwyzMNBf3IV7hqohWAAAAAADAU4hXuCyiFQAAAAAA8DTiFQogWgEAAAAAIO42aBLEKzgQrQAAAAAAgNkQr0C0AgAAAAAAJbJs2bJiv+eWW25RYGBgkY8nXpVjRCsAAAAAAK6AbYNX1b9//2Idb7FYtG/fPtWtW7fI7yFelUNEKwAAAAAA4CxJSUmKiooq0rGhoaHFHp94VY4QrQAAAAAAgDONHDmyWFsAhw0bprCwsGJ9BvGqHCBaAQAAAABQAoblwsMszDSXPyxYsKBYx7/xxhvF/gziVRlGtAIAAAAAAN6OeFUGEa0AAAAAAIC7paen68UXX9SaNWt04sQJ2e32fK8fPHiwROMSr8oQohUAAAAAAM5jGBceZmGmuRRmzJgx2rBhg4YPH67Y2FhZLM7Z5ki8KgOIVgAAAAAAwNO+/PJLLV++XDfeeKNTxyVeeTGiFQAAAAAAMIuKFSsqMjLS6eMSr7wQ0QoAAAAAADcw/niYhZnmUohp06bpmWee0dtvv62goCCnjUu88iJEKwAAAAAAYCatW7fOd22r/fv3Kzo6WrVr15afn1++Y3/66acSfQbxygsQrQAAAAAAgBn179/f5Z9BvDIxohUAAAAAAB5kWC48zMJMc/nDlClTXP4ZxCsTIloBAAAAAABcQLwyEaIVAAAAAADwJpGRkfrtt99UuXLlIh1fs2ZNbdy4UbVq1SryZxCvTIBoBQAAAACA+ViMCw+zMNNc8pw9e1ZffvmlwsPDi3T86dOnZbPZivUZxCsPIloBAAAAAABvN3LkSJeOT7zyAKIVAAAAAAAoC+x2u8s/g3jlRkQrAAAAAAC8iPHHwyzMNBc3Il65AdEKAAAAAACgZIhXLkS0AgAAAAAAKB3ilQsQrQAAAAAAKAMMy4WHWZhpLm5EvHIiohUAAAAAAIBzEa+cgGgFAAAAAAAgHThwQAsWLNCBAwc0c+ZMRUVFaeXKlapRo4aaNm1aojF9nDzHciUzM1MHDx7U7t27vS5cRUZGqmnTpqpTpw7hCgAAAACAwhgmfJjYhg0b1Lx5c33//fdaunSp0tLSJEk///yzpkyZUuJxiVclQLQCAAAAAADI7/HHH9ff//53rVq1Sv7+/o7nu3btqs2bN5d4XLYNFgPbAwEAAAAAAAq3c+dOvffeewWer1Klik6fPl3icYlXRUC0AgAAAACgHDLbVj0zzaUQEREROn78uOrUqZPv+W3btqlatWolHpd4dQVEKwAAAAAAgKK5++679dhjj+njjz+WxWKR3W7Xt99+q0mTJmnEiBElHpd4VQiiFQAAAAAAQPE8//zzGjVqlKpVqybDMNSkSRPZbDbdfffdeuqpp0o8LvHqIkQrAAAAAADgwLbBYvHz89O7776r5557Ttu2bZPdblfr1q3VoEGDUo1LvBLRCgAAAAAAwFnq1aunevXqOW28ch2viFYAAAAAAKCs+vrrr/XSSy/pxx9/1PHjx/Xpp5+qf//+lz1+/fr16tq1a4Hnf/31VzVu3Piqn2cYhj755BOtW7dOJ06ckN1uz/f60qVLi30OUjmNV0QrAAAAAABwVYblwsMsijmX9PR0tWzZUqNHj9bAgQOL/L69e/cqLCzM8XWVKlWK9L6JEydq7ty56tq1q6Kjo2WxOOf3rlzFK6IVAAAAAAAoL3r27KmePXsW+31RUVGKiIgo9vveeecdLV26VL169Sr2e6+kXMQrohUAAAAAACgrUlNT831doUIFVahQwWnjt27dWllZWWrSpImeeuqpQrcSFiY8PFx169Z12jzy+Dh9RBPJzMzUwYMHtXv37kLDVUJCgu655x4NGDBAI0aM0MGDBwsd57PPPtPtt9+ufv366fnnn1dubq7jtY0bN2rgwIHq37+//va3vykjI0OSdOzYMXXr1q3Ec4+MjFTTpk1Vp04dwhUAAAAAAB5gMcz3kKQaNWooPDzc8XjhhReccr6xsbGaO3eulixZoqVLl6pRo0bq1q2bvv766yK9f+rUqXr22WeVmZnplPnkKZMrrzIyMpSYmKgzZ84oOztbfn5+8vf3L3Dc9OnTdfvtt6tPnz5avXq1pk2bpgULFuQ7JjExUXPmzNG7776ryMhIPfLII/rvf/+rgQMHKiMjQ9OmTdPcuXNVu3ZtzZgxQ/Pnz9cDDzxQ4rmz0goAAAAAAFzJkSNH8l2Tylmrrho1aqRGjRo5vm7fvr2OHDmil19+WZ06dbrq+++44w69//77ioqKUu3ateXn55fv9Z9++qlE8ypT8So9PV3/+/Irff7ecp089LtSks/Jnm3IYpVCo4JVsXq4brj1OrXrcL1+//137dmzR7NmzZIkdevWTS+99JKOHTumqlWrOsZcs2aNunbtqkqVKkmSBg4cqEWLFmngwIHatGmT4uLiVLt2bUkX/iNNnDgxX7yaM2eOvvnmG6WlpWnSpEnq0KFDoXMnWgEAAAAAgKIICwvLF69cqV27dnrnnXeKdOyoUaP0448/atiwYVyw/VJ2u13btm3TPya/qmObT6tCWogsFh8FKFyGYShFZxRw0lcnd2foo7UrtLLlat3Q/1pVqVJFvr4XfgssFouio6OVlJSUL14lJSUpJibG8XXVqlWVnJzseC02NjbfaxffCjIlJUWNGzfWuHHjtGnTJr388ssF4hXRCgAAAAAAkzL+eJiFB+aybdu2fO3jSpYvX67//e9/l124U1JeH6/sdruWfLRUs598S9aDwQqwhEoXhb0UndZWrVdbdVGEKqtCbpCyf5Q+2f+F0v3Si/QZF5dCwzAu+9qlAgMD1aVLF0lSixYtlJiY6HiNaAUAAAAAAFwpLS1N+/fvd3x96NAhbd++XZGRkapZs6YmT56sxMRELVq0SJL02muvqXbt2mratKnOnz+vd955R0uWLNGSJUuK9Hk1atRwyYowr79g+9o1azX78fnyPRRSaEg6ocR8/zdP6NlKOn3yjNb9b72kC1EqOTk53yorSYqJidHx48cdXx8/flzR0dGO144dO+Z47dixY4qKipKPz4Xf1ouvs+Xj4yObzcaF2AEAAAAAgFts3bpVrVu3VuvWrSVJjzzyiFq3bq1nnnlG0oXGkZCQ4Dj+/PnzmjRpklq0aKGOHTvqm2++0fLlyzVgwIAifd4rr7yiRx99VPHx8U49D69eeZWcnKzXn5kt6+GgfKut8hiGod/9k9WwdkMdj0+Scd5wBC5/S4BCjQjN/+fbatOutbZs2aLY2Nh8WwYl6aabbtKYMWM0ZswYRUZGasmSJerevbukCxcumzFjhuLj41W7dm19/PHHjtcuVbFiRUlSnTp1nPg7AAAAAAAAULguXboU2EF2sYULF+b7+tFHH9Wjjz5a4s8bNmyYMjIyVK9ePQUFBRW4YPuZM2dKNK5Xx6v/zJqn1C258rMUflX9VP2uc+dTteKt5erYsaPO6XeFKdLxepyu0S+ntuj2vrerWs1qmjp1qiRp2rRp6tSpkzp37qzq1avr/vvv17333ivDMNS2bVv1799fkhQcHKynnnpKf/3rX2Wz2VS/fn3HGHnytgfm5ua64rcAAADAFB566CEtW7ZMhw8f1s6dO9WsWbMrHp+dna1hw4YpICBAixcvdjy/aNEiffHFFzIMQ7Vq1dKUKVMUGhpa4P2jRo1S27ZtS3WXZwAA4FyvvfaaS8b12nh19uxZbV21XX72y98O8oQS1bpla3Xo0EGtWrTSiZ8T88WrYEuortNNyolM0/P/ecqxje/pp5/ON87tt9+u22+/vdDP6Ny5szp37lzg+WbNmikpKSnf1sAr1U4AAABvNmjQID366KNFvkDr7Nmz1bx5c+3bt8/x3Hfffafly5drwYIFCg4O1ty5czV79mw99thjrpo2AABwopEjR7pkXK+NV/v379ep31IUqHAdNHYr05pW4JjfLSc1/u6pkqQ7775TU3c/q2wjs8Bx/kcC9PWab9S9982lnhcXYgcAAOVRp06dinzstm3blJCQoKFDh2rmzJmO5/ft26fWrVsrODhYktSxY0eNGzfusvFq9+7duvnmm5WQkKBmzZrpgw8+yHfNUQAASssiyWKidSiXv2Wc56Smpjou0p6amnrFY0t6MXevjVebvt4sn98rSBbJ7mPTcVuCQkNDddddd8lqtUqS/Pz8NGrUKEnS6NGjdezYMeXk5EiScnNz9cEHH+jcuXOq7dNICXuPSL1LPh+iFQAAwNVlZmbqlVde0auvvprvArGSFBcXp6VLl+r06dOKjIzUihUrlJ6erpSUFIWHhxcYa/v27VqzZo38/f3VqVMnLVmyRHfddZe7TgUAAOjCNb6PHz+uqKgoRUREFHozPcO4cA1ym81Wos/w2nh19FCiKlguhKL6RnOFqqJ+y9yuXT/v0gcffaAaNWrkOz4qKsrxL3sJCQm6c/CdOp+Zo+Zqp2ijujJTs0o0j4oVK6pq1apEKwAAgCKYOXOm7rjjDkVFRRWIV23bttXQoUP18MMPy2q1qmvXrpIkX9/C/8o6YMAABQYGSpKuu+46HThwwLWTBwAABaxdu1aRkRcu0bRu3TqXfIbXxitZ/ix3khRtqa6w3Ira8+NPatakmRYuWljodao+/fRTjRoxSn7Zgbo29yYFWIIuDOdTssV358+f1/nz51WhQoVC6yIAAAD+tH37dn377beaN2+ezp8/r9TUVA0ePFgfffSRpAvXzho0aJAkaefOnYqOjnZsI7zUxf94aLVauUEOAMD5DMuFh1mYaS5/uPg64HXq1FGNGjUK9BHDMHTkyJESf4bXxqv6cfW02bJTAQpyPBdoCVbLnBu1L+dnDRgwwLHkPM+ZM2c0YMAA1VB9NVAL+Vh8HK8FhQeWaB7p6enat2+fgoODVbVqVYWGhhKxAAAALuODDz5w/Hrr1q2aOXNmvrsNnjp1SpUrV1ZWVpbmzJmj4cOHe2KaAACgBOrUqePYQnixM2fOqE6dOiXeNuhz9UPMqd2N10uVcwo872Pxkb8qqH7d+vnClXRhi1+9OvXkrwr5wlW2MtWgRd1SzScvYu3du1epqancWRAAAJQrEyZMUPXq1XX06FHdfPPNql+/vuO1Z599Vhs2bCjyOIMHD9Zdd92lVq1aaciQIa6aMgAAcLKLd8hdLC0trVSXW7IYXlpZzp07p9G33aeUjQWXh//kv0Hj/3a/nnvuOc2ZM0dTnpmiZ597VuPGjdPTTz+tN16eqzbn/1zWZq+boenvPnPZ6ymUBCuxAAAALtixY4dTt/T5+vqqZcuWThsPAIBLpaamKjw8XLVeeF4+JrrGtT0rS4cnP6mUlJQS37nPFR555BFJF65tOXbsWAUF/blLzmaz6fvvv5fVatW3335bovG9dttgaGioOva5QUu/+5/8c/7c8pdhpOlM9kl17dpVffv208ovVyraVkMPPfCQVn65Ug9NfEjPP/+8MpSmIEuIbIZNjdrXcWq4kthOCAAAAAAAyodt27ZJurDyaufOnfL393e85u/vr5YtW2rSpEklHt9r45UkjRwzXBu//FZn1+Y6wtAJJcrP109D7xqqrLPn1dbWRSGWcNWw19OG/32jH77/Qb5WX520JaqWGsm3yXkNG+e6WyoTsQAAAAAAQFmWd5fB0aNHa+bMmU5fFea117ySpIiICD3x0qNS4wzHNaZ+909WTm6O/E4Fq/X5TgqxhEuSQizhanO+k/xOBSvXlqsz/snKiU7XXQ8PKtW+y6LimlgAAAAAAHgZw4QPE1uwYIFLtjN6dbySpDZt2uiZNx+XtUWWco0cBZ4PUQu1VyOjtayW/AvLrBZfNTJaq7naqUKFCrrrqf5q0aa5W+dLxAIAAAAAACg6r942mKdTp06qtayWpj8xQ7a1WfJNCir0OMMwlB2epsbX1tXYR6cpMrKim2f6J7YTAgAAAAAAXF2ZiFeSVKtWLc1aOFPbt2/Xe/M+UNL+k/o9KVU5WTmy+loVFhWiSjUi1GvwCFWvUc3T03UgYgEAAAAAYE4W48LDLMw0F3cqM/FKkvz8/HTttdeqdevWOn78uE6ePOk12/KIWAAAAAAAAAWVqXiVx9fXVzVq1FBsbKySk5N14sQJ2e12T0+rSIhYAAAAAADAWyxbtqzIx/bt27dEn1Em41UeX19fVatWTdHR0UQsAAAAAABQPGa7w5+Z5vKH/v37F+k4i8Uim81Wos8o0/EqDxELAAAAAADA+dzRV3xc/gkmkhexmjdvrpiYGPn4eM/p50WsvXv3KjU11Wuu5QUAAAAAAMqfrKwsp43lPfXGiYhYAAAAAADgqgwTPkzMZrNp2rRpqlatmkJCQnTw4EFJ0tNPP6233nqrxON6T7VxASIWAAAAAACAczz//PNauHCh/vGPf8jf39/xfPPmzTVv3rwSj+s9tcaFiFgAAAAAAACls2jRIs2dO1dDhw6V1Wp1PN+iRQvt2bOnxOOWiwu2FxUXdgcAAAAAAHksxoWHWZhpLoVJTExU/fr1Czxvt9uVk5NT4nG9Z4mRG7ESCwAAAAAAoHiaNm2qjRs3Fnj+448/VuvWrUs8LiuvroCVWAAAAAAAAEUzZcoUDR8+XImJibLb7Vq6dKn27t2rRYsW6YsvvijxuN6zpMiDWIkFAAAAAEA5ZFjM9zCxPn366MMPP9SKFStksVj0zDPP6Ndff9Xnn3+uW265pcTjsvKqGFiJBQAAAAAAcHk9evRQjx49nDqm9ywhMhFWYgEAAAAAAOQ3evRorVmzxumtwXuqiwkRsQAAAAAAKMMMEz5M7PTp0+rdu7eqV6+uv/71r9q2bZtTxvWe2mJiRCwAAAAAAFDeLVu2TElJSZoyZYp+/PFHtW3bVk2aNNH06dMVHx9f4nG9p7J4ASIWAAAAAAAozyIiInTfffdp/fr1Onz4sEaPHq3Fixerfv36JR6TC7a7ABd2BwAAAADA+1mMCw+zMNNcriYnJ0dbt27V999/r/j4eEVHR5d4LO9ZGuSFWIkFAAAAAADKk3Xr1mns2LGKjo7WyJEjFRoaqs8//1xHjhwp8ZisvHIDVmIBAAAAAICyrnr16jp9+rR69OihN998U3369FFAQECpxyVeuRERCwAAAAAAL2K2O/yZaS6FeOaZZ3THHXeoYsWKTh2XeOUBRCwAAAAAAFDW3HfffS4Zl3jlQUQsAAAAAABQlmzZskUff/yxEhISdP78+XyvLV26tERjes8VxMswLuwOAAAAAIAJGX/ecdAMD7NvG/zggw904403avfu3fr000+Vk5Oj3bt3a+3atQoPDy/xuN5TScoBIhYAAAAAAPBW06dP1z//+U998cUX8vf318yZM/Xrr79q8ODBqlmzZonH9Z46Uo4QsQAAAAAAgLc5cOCAevfuLUmqUKGC0tPTZbFY9H//93+aO3duicf1nipSDhGxAAAAAADwIMOEDxOLjIzUuXPnJEnVqlXTrl27JElnz55VRkZGicflgu1egAu7AwAAAAAAs+vYsaNWrVql5s2ba/DgwZo4caLWrl2rVatWqVu3biUel3jlRYhYAAAAAADArGbNmqWsrCxJ0uTJk+Xn56dvvvlGAwYM0NNPP13icYlXXoiIBQAAAACAG5htq56Z5nKJ3Nxcff755+rRo4ckycfHR48++qgeffTRUo/tPRdRQgFcEwsAAAAAAJiBr6+v/vKXvyg7O9vpY3tP7cBlEbEAAAAAAICnXX/99dq2bZvTx2XbYBnCdkIAAAAAAJzHYlx4mIWZ5lKY8ePH669//auOHj2qa665RsHBwfleb9GiRYnGJV6VQUQsAAAAAADgLvfcc49ee+01DRkyRJL00EMPOV6zWCwyDEMWi0U2m61E4xOvyjAiFgAAAAAAcLW3335bL774og4dOuSS8YlX5QARCwAAAAAAuEre9atr1arlkvGJV+UIEQsAAAAAALiCK39GJ16VQ0QsAAAAAADgTA0bNrzqz+dnzpwp0djEq3KMiAUAAAAAwBUYfzzMwkxzucSzzz6r8PBwl4xNvAIRCwAAAAAAlMqdd96pqKgol4xNvIIDEQsAAAAAABSXq3/+Jl6hACIWAAAAAACSxbjwMAszzeVieXcbdBXiFS6LiAUAAAAAAK7G1a2AeIWrImIBAAAAAABPIV6hyIhYAAAAAIByx6Rb9coT4hWKjYgFAAAAAADchXiFEiNiAQAAAAAAVyNeodSIWAAAAACAMsmQubYNmmkubkS8gtMQsQAAAAAAgLMRr+B0RCwAAAAAAOAsxCu4DBELAAAAAODNLMaFh1mYaS7uRLyCyxGxAAAAAABASRGv4DZELAAAAAAAUFzEK7gdEQsAAAAA4BW426ApEK/gMUQsAAAAAABwNcQreBwRCwAAAAAAXI6PpycA5MmLWM2bN1dMTIx8fLzn/z3zItbevXuVmpoqwyinazkBAAAAXFVWVpb69++vhg0bqlWrVrr11lsVHx9f6LE7d+5Uly5dFBcXp0aNGmnp0qWSpEOHDumaa65Rq1at1Lx5c91xxx36/fffJUnx8fGqXLmyu06nTMu726CZHuURK69gOqzEAgAAAOCNbDab0tLSdPToUW3fvlEnThyUxWJV3bpt1KZNe0VFRcnf31+SdN9996lnz56yWCyaNWuW7rvvPn311Vf5xsvIyFD//v319ttvq0OHDsrNzXUEqqpVq+qbb75RYGCgJOnhhx/WtGnT9Oqrr7r3pAE3IF7BtIhYAAAAAMwsL1alpaXp7Nmz+uqrxcrJ3qyqsQlq3SpTVSr7yDCkQ4cWaPmycP1+tr4axQ1R7953qlevXo5x2rVrp9dee63A+O+9957at2+vDh06SLrwM1KVKlUkSRUqVCgwj4iIiHzvf+aZZ7R8+XKlpKTo9ddfz/eZgDchXsH0iFgAAAAAzODiWHXu3Dmlp6dLko4k7Neunf/WwNv3qXKlvMufWCVJFotUr55V9eqlSdquXb/s1AvTP9U9976uGjVqSJJef/119enTp8Dn7d69WwEBAbrtttt09OhRtWjRQq+88oojYJ0/f17XXXedDh8+rJYtW2rZsmWO954+fVrXXHONnnvuOa1cuVITJ04kXpUEdxs0Be+5qBDKPa6JBQAAAMCdbDabUlJSlJiYqD179mj79u3av3+/kpKSHOHqt70/6tSJZ3X/mAMXhavLa9bUprGjv9f8eXdo//79mj59uvbt26fnn3++wLE5OTn63//+pzfffFPbtm1TjRo1NGHCBMfr/v7+2r59u5KTk9WoUSPNmTPH8VpwcLD69esnSWrfvr0OHDhQ2t8OwGNYeQWvw0osAAAAAK5wuZVVl3PqVLJOn5qpIYNSivU5fn4W3T8mQcNHd9ep0+Fat26dgoKCChxXq1Ytde3aVdWqVZMkDR06tNDVU/7+/ho9erTGjh2rRx99VJIUEBDgeN1qtcpmsxVrjoCZEK/gtYhYAAAAAEqjuLHqYoZhaPOmf2r8fb9LKv7f5efOS9exYyc1dGgPhYeHF3rM4MGD9dZbbyk1NVVhYWFauXKlWrZsKUlKSEhQpUqVFBwcLLvdro8++kgtWrQo9jxwFWwbNAXiFbyesyJWQkKCpk6dqrNnzyokJERTp05V3bp1Cxy3detWTZw4UbVq1XI8N3/+fAUEBGj//v2aMWOGzpw5I19fX7Vo0UJ/+9vfHHcUudjUqVMVFxenIUOGELEAAAAANyhNrLrU7t1b1aXjryX6+/uxYzZNeS5VtWpZNXv2Qr373tcKCQnR999/rzFjxqhv377q27evatasqcmTJ6t9+/aOn3vmzp0rSdq1a5cef/xxSZLdblebNm30+uuvl/h8ADOzGFx8B2VMbm5uiSLWuHHj1Lt3b/Xp00erV6/Wu+++qwULFhQ4buvWrZo5c6YWL15c4LWEhARlZ2erQYMGstlseuqpp9SgQQPdc889BY69OF7lIWIBAMqiHTt2KDc312nj+fr6OlYeAMCVODNWXWrVV9N078gtpR4nJcWu1RvGady4KU6YFZwlNTVV4eHhavjIdFkrBFz9DW5iy87Sb68+oZSUFIWFhXl6Om7DyiuUOSVZiXXmzBnt2bNHs2bNkiR169ZNL730ko4dO6aqVasW+bNr1qzp+LXValWTJk0UHx9/2eMPHTqk8ePHKykpSfXq1dP06dOVnp5OxAIAAABKwJWx6lJBgUedMk54uI/S03bKMAz+7m9CFuPCwyzMNBd3Il6hzCpOxEpOTlaVKlXk63vhfxIWi0XR0dFKSkoqNF4dPnxYQ4cOldVqVZ8+fXTHHXcUOCYzM1OfffaZHnzwwcvO8bffftPs2bPl5+ensWPHas2aNbr11lu5JhYAAABQBO6MVRc7d+6cKoafcdp4Vp9kZWZmFnrRdgDEK5QDRY1YRY1DjRs31ooVKxQSEqLk5GRNnDhRERERuuWWWxzH5ObmavLkyWrXrp26dOly2bG6du3quAtI06ZNdfRo/n+9IWIBAAAAf/JUrLpUWlqaIiLOO208Hx/njQWURcQrlBtXilh5z+Xm5srX11eGYSg5OVkxMTEFxgkJCXH8Ojo6Wj169NC2bdsc8So3N1ePP/64KleurEmTJl1xThdfyP1Kt68lYgEAAKA8MkusupS/v79SzlklOed6foZhlY+Pj1PGgpNxt0FTIF6h3CksYkVGRqpRo0b68ssv1adPH61Zs0axsbGFbhk8deqUIiMj5ePjo/T0dG3cuFH9+vWT9OeKq7CwMD355JNOD0xELAAAAJRlZo1Vl4qMjNTe3eGSTjtlPJutsqxWq1PGAsoi4hXKrUsj1lNPPaUpU6ZowYIFCg4O1tSpUx3HTps2TZ06dVLnzp21Zs0aLVmyxLFSqlu3burbt68kadWqVVq3bp0aNGigoUOHSpJatmypxx57zKlzJ2IBAACgLPCWWHUpi8WirOxYOSNe5eQYsljryM/Pr/QTA8ooi2EY5XTRGZBfbm5uke9OaDZELACAme3YsUO5uc7ZWiNd+Aeoli1bOm08AO7jrbGqMJs2fa6uHecqOqp0f/9evjJY113/qZo0beqkmcEZUlNTFR4erkYTp8taIcDT03GwZWdp78wnlJKSorCwME9Px21YeQX8oTh3JzQbVmIBAADAjMpSrLrUddf11OfLV2jM6MQSj3H+vKHExJZq0LChE2cGlD3EK+ASRCwAAACgZMpyrLqUr6+vata+V5u/m6H27bJLNMb7H0Vr2IiX2TIIXAXxCrgMIhYAAABwZeUpVhWmceO2+mbjQAWHfKwWzXKK9d7PlkWoWYunVatWLRfNDs5gMS48zMJMc3En4hVwFUQsAAAA4ILyHqsK06Hjnfrhh2Dt3/+Rbu939qp/305Lt+uDj2qp/Y3PqHPnnm6aJeDdiFdAERGxAAAAUN4Qq4rmuuv66NSp6zVvwX9Upcov6tYlVaGhPvmOSUy0a/3XMco1rtc9Y55VdHS0h2YLeB/iFVBMRCwAAACUVTabTenp6Tp37hyxqpgqV45Sj55PKi0tTZ+vXKPsrHhZrRkyDMlur6hq1dpq+KhBioyM5O/g3sT442EWZpqLGxGvgBIiYgEAAMDbEaucLyQkRJ063a7Q0FCFhIQoNDRUQUFB/H0bKAXiFVBKRCwAAAB4C2KVa/j4+BCrABciXgFOQsQCAACA2RCrXINYVX5wt0FzIF4BTkbEAgAAgKcQq1yDWAV4FvEKcBEiFgAAAFyNWOUaxCrAXIhXgIsRsQAAAOAsxCrXIFbhsrjboCkQrwA3IWIBAACguIhVrkGsArwL8QpwMyIWAAAALodY5RrEKsC7Ea8ADyFiAQAAgFjlGsQqOA3bBk2BeAV4GBELAACg/CBWuQaxCijbiFeASRCxAAAAyh5ilWsQq4DyhXgFmAwRCwAAwHsRq1yDWAVPsfzxMAszzcWdiFeASRGxAAAAzI9Y5RrEKgAXI14BJkfEAgAAMA9ilWsQqwBcCfEK8BJELAAAAPcjVrkGsQpeg7sNmgLxCvAyRCwAAADXIVa5BrEKQGkQrwAvRcQCAAAoPWKVaxCrADgT8QrwckQsAACAoiNWuQaxCmWVxbjwMAszzcWdiFdAGUHEAgAAKIhY5RrEKgDuRLwCyhgiFgAAKM+IVa5BrALgScQroIwiYgEAgPKAWOUaxCrgD9xt0BSIV0AZR8QCAABlCbHKNYhVAMyMeAWUE0QsAADgjYhVrkGsAuBNiFdAOUPEAgAAZkascg1iFVAK5XSrnpkQr4ByiogFAADMoCSx6qWXXtLXX3+t48eP64MPPlD9+vULPW7r1q2aOHGiatWq5Xhu/vz5CggIkCQtWrRIX3zxhQzDUK1atTRlyhSFhoYWGGfq1KmKi4vTkCFDSniW7kesAlCWEK+Aco6IBQAA3MkZK6u6deumESNGaMyYMVc9tm7dulq8eHGB57/77jstX75cCxYsUHBwsObOnavZs2frscceK/Z8zIBYBaAsI14BkETEAgAAruGKbYBt2rQp9Rj79u1T69atFRwcLEnq2LGjxo0bd9l4dejQIY0fP15JSUmqV6+epk+fLj8/v1LPo6SIVYB7WIwLD7Mw01zciXgFIB8iFgAAKA2zXbPq8OHDGjp0qKxWq/r06aM77rhDkhQXF6elS5fq9OnTioyM1IoVK5Senq6UlBSFh4cXGOe3337T7Nmz5efnp7Fjx2rNmjW69dZb3XYexCoA5RnxCkChiFgAAKAozBarLta4cWOtWLFCISEhSk5O1sSJExUREaFbbrlFbdu21dChQ/Xwww/LarWqa9euki78HagwXbt2dVwrq2nTpjp69KhL506sAkzCkLku2G6mubgR8QrAFRGxAADAxcwcqy4VEhLi+HV0dLR69Oihbdu26ZZbbpEkDRo0SIMGDZIk7dy5U9HR0Y5thJfy9/d3/Npqtcpmszl1rsQqALg84hWAIiFiAQBQPnlTrLrUqVOnFBkZKR8fH6Wnp2vjxo3q169fvtcrV66srKwszZkzR8OHD3fb3IhVAFB0xCsAxULEAgCgbPOGWDVjxgxt2LBBp0+f1oQJExQYGKjPPvtMkjRt2jR16tRJnTt31po1a7RkyRLHSqlu3bqpb9++jnEmTJggwzCUk5OjXr16aciQIS6bM7EK8E5csN0cLIZhlNNTB+AMubm5Xhex8hCxAMA9duzYodzcXKeN5+vrq5YtWzptvPLOG2KVNyJWAd4tNTVV4eHhaj5muqz+AZ6ejoPtfJZ2zntCKSkpCgsL8/R03IaVVwBKhZVYAAB4F2KVaxCrAMB1iFcAnIKIBQCAORGrXINYBZQT3G3QFIhXAJyKiAUAgGcRq1yDWAUAnkO8AuASRCwAANyDWOUaxCoAMA/iFQCXImIBAOBcxCrXIFYBKAx3GzQH4hUAtyBiAQBQMsQq1yBWAYD3IF4BcCsiFgAAV0ascg1iFQB4L+IVAI8gYgEAcAGxyjWIVQCcgrsNmgLxCoBHEbEAAOUNsco1iFUAUHYRrwCYAhELAFBWEatcg1gFAOUH8QqAqRCxAADejljlGsQqAB7BtkFTIF4BMCUiFgDAWxCrXINYBQDIQ7wCYGpELACA2RCrXINYBQC4HOIVAK9AxAIAeAqxyjWIVQC8gcW48DALM83FnYhXALwKEQsA4GrEKtcgVgEASop4BcArEbEAAM5CrHINYhUAwFl8PD0BACiNvIjVvHlzxcTEyMfHe76t5UWsvXv3KjU1VYZRTtcAA4Cb2Ww2paamKjExUXv27NH27du1b98+JSUlEa5KwcfHR+Hh4apWrZoaN26sVq1aqX79+oqJiVFwcDDhCoB3Mkz4KIavv/5affr0UdWqVWWxWPTZZ59d9T0bNmzQNddco4CAANWtW1dz5swp3oe6ACuvAJQJrMQCAFwOK6tcg5VVAGB+6enpatmypUaPHq2BAwde9fhDhw6pV69eGjt2rN555x19++23Gj9+vKpUqVKk97sK8QpAmULEAgAQq1yDWAUA3qdnz57q2bNnkY+fM2eOatasqddee02SFBcXp61bt+rll18mXgGAsxGxAKD8IFa5BrEKACSLYchiost75M0lNTU13/MVKlRQhQoVSj3+5s2b1b1793zP9ejRQ2+99ZZycnLk5+dX6s8oCeIVgDKNiAUAZY9hGEpNTSVWORmxCgC8R40aNfJ9PWXKFE2dOrXU4yYlJSk6Ojrfc9HR0crNzdWpU6cUGxtb6s8oCeIVgHKBiAUAZYfNZtO+ffs8PQ2vR6wCAO915MgRhYWFOb52xqqrPJf+WZB3YylP/hlBvAJQrhCxAADlFbEKAEqgBHf4c6k/5hIWFpYvXjlLTEyMkpKS8j134sQJ+fr6qlKlSk7/vKLynnvKA4AT5UWs5s2bKyYmRj4+3vPtMC9i7d27V6mpqY5/CZGkffv26YYbblDDhg113XXXaffu3QXev379egUFBalVq1aOR2ZmpiRp586d6tSpkxo3bqzmzZvrvvvuU3Z2tiQpPj5elStXds9JAsAfXnrpJfXp00dt27bV/v37L3vcZ599pttvv139+vXT888/r9zc3HyvG4ahv/zlL+rWrZvjuWPHjuX7uqzx8fFReHi4qlWrpsaNG6tVq1aqX7++YmJiFBwcTLgCABTQvn17rVq1Kt9zX331ldq2beux611JrLwCUM55y0osm82mbzd+p99+TVDq75my2+zyq+CripUCde0NrdSsWRNZLBaNHTtWt912m/r166dVq1bprrvu0qJFi/KNtX//ftWpU0dvv/2247nffvtNknT48GE9+OCDatiwoWw2myZPnqxJkyZpzJgxSkxMlM1m044dO9x67gC836UhKU9mZqa+WrdRCSd+17nMHElSoL9V0RFBurnTDYqqUkXdunXTiBEjNGbMmMuOn5iYqDlz5ujdd99VZGSkHnnkEf33v//Nd1ekDz/8ULGxsY7vd2URK6sAAJdKS0vL948/hw4d0vbt2xUZGamaNWtq8uTJSkxMdPzMMG7cOM2aNUuPPPKIxo4dq82bN+utt97S+++/76lTkES8AgBJ5o1YdrtdH3+wTDu+i9f5MxVVwTdU0p/72ZMNQ9s3rFPFaqt1XadG+vXXX/Wvf/1Lubm56tKli1588UUlJCSoatWqjvfYbDYZhlHoD5PVqlWT9OcPmnFxcYqPj1dubq7jfbNmzdI333yjtLQ0TZo0SR06dHDtbwKAMic9PV3z3v9Ue05kKDu8tqz+sX/+rdQu/XLSprX/+Vy1wywa0e+WAheOvdSaNWvUtWtXx3aGgQMHatGiRY54lZCQoK+++kpTp07Vhg0bCrx/zpw5Xvl9jVgFAK5nMS48zKK4c9m6dau6du3q+PqRRx6RJI0cOVILFy7U8ePHlZCQ4Hi9Tp06WrFihf7v//5P//73v1W1alW9/vrr+f5ByBOIVwBwETNFrBMnTmj2K+8p41gl+VlrqkIh37EtFosCLVHKOi4tXfi9rD5++V6Ljo5WUlJSvnglXVhhNXToUFmtVvXp00d33HFHgbEzMzP12Wef6cEHH3Q8l5KSosaNG2vcuHHatGmTXn75Za/5IQ+AOWzZtkOLv9ykjMjGslSxylrIMRarVapSX/GGoenvrtItzapdccykpCTFxMQ4vq5ataqSk5MlXfhHgL///e967LHH5Otb8BupN31fI1YBAIqrS5cu+S4zcqmFCxcWeK5z58766aefXDir4iNeAUAhPB2xTpw4oVenLZJPah35WYv2g4mfIpSb5aOX/j5Hjz79F1mthf1IKDVu3FgrVqxQSEiIkpOTNXHiREVEROiWW25xHJObm6vJkyerXbt26tKli+P5wMBAx9ctWrRQYmJiic8RQPmzectPenvtTtmqNFVRvrNZLBbZKtXTit9OKi0946rH5rn4L+mLFy9WmzZt1KhRIx07dqzA+8z8fY1YBQDABcQrALgCT0QswzA0+9X35JNap1g/pAT4hSk7N02n94dr8fyPNXLMECUnJ+dbjSBJISEhjl9HR0erR48e2rZtmyNe5ebm6vHHH1flypU1adKkfO/19/d3/NrHx0c2m60kpwigHDrz++9656stskXFFfu9PqFVlJVraOcve1S/fv0Cr8fExOj48eOOr48fP+7Yarht2zbt27dPy5cvl81m07lz59SnTx+9++67ksz1fY1YBQAmZNK7DZY3xCsAKAJ3RqwlH32hjMRKRV5xlaeCb7BCA6J16twB7dpcWe8Hva/Y2NgCWwZPnTqlyMhI+fj4KD09XRs3blS/fv0k/bniKiwsTE8++SQ/NAFwmjfeWarsKo2KtOKqMBYfq77cvEN9et9aYPvfTTfdpDFjxmjMmDGKjIzUkiVL1L17d0nSa6+95jju2LFjGj58uD7//HNJFy5i60nEKgAAioZ4BQDF4OqIZRiGtn93UH7WGiV6f9NqPbXz6Bc6eDJDO4/4avacWZKkadOmqVOnTurcubPWrFmjJUuWyGq1ymazqVu3burbt68kadWqVVq3bp0aNGigoUOHSpJatmypxx57zDknCLdLSEjQ1KlTdfbsWYWEhGjq1KmqW7dugeO2bt2qiRMnqlatWo7n5s+fr4CAAO3fv18zZszQmTNn5OvrqxYtWuhvf/tbvhUreaZOnaq4uDgNGTLEpecF73LseJIOnvORT4BPsd97ZOMSpRzepZyMc/r5m1Xq2etrrfrqf/m+r1WvXl3333+/7r33XhmGobZt26p///7OP5FSIlYBAFAyFuNKV+4CAFxRbm6uUyPW1i3b9N7MHxXoG1nqsc4HxOvFf0+87LWvUD6MGzdOvXv3Vp8+fbR69Wq9++67WrBgQYHjtm7dqpkzZ2rx4sUFXktISFB2drYaNGggm82mp556Sg0aNNA999xT4FjiFQrz5uKPtCUzShZL8ePVpWpkH9QzD4wq/aTcgFgFAN4rNTX1/9u7+yC76jrP45+b7nQ6JOmGhJBEJNEBDJDhOc4SBSSbUQQFfEBwJiOOK7osrEJZ7ghjlSIUuFMoQ1EOQrbUknHGUTYW6wwRxRQOuKPsqjgiiLDyGB6CCZJAoNMP9+wfgYaQG0jS997+dffrVXWqQufc099DEYp+8/udk97e3hzxZ5eko6t7tMcZNtTfl19889PZsGFDenp6RnuctrHyCmAEmr0S69f/fk+6O/ZoymwDT0/Nfffdn/333/b5MEwMTz75ZO6+++586UtbVuAtW7Ysl112WR599NFttpO+kvnz5w//uqOjIwcddFAeeOCB7Z5///335+yzz87jjz+efffdN5deemkmT5683fMZ/36/sS+1rpGHqyT5/dObU1VVkRFIrAKA1mjOf0UATHAvRKyDDz44c+fOzaRJu/av16ef6mvaDzpTO2blzl/9tinXYmxau3ZtZs+ePfx8oFqtljlz5uTxxx9veP6DDz6Y5cuX54wzzsh1113X8Jznnnsu119/fY455pjtft977rknl19+ea677rqsX78+q1evHvnNMKY99Vx/0661qT45GzZsaNr1RmLSpEnp7e3N3nvvnQMOOCCHHXZY9ttvv8ydOzfTpk0TrgCgSay8Amiika7Eqg81byd3rdaRzZub9wMjY9OO/vB8wAEHZNWqVZk+fXrWrl2bc889N7vvvvvwWyiTFx/of9RRR+W4447b7rWWLl2a7u4ty+sXLVqUNWvWjOgeGPvqTXxIRb3WkYGBgeZdcBd0dnZm+vTp2WOPPTJjxgwrCwHGM28bLIJ4BdACuxqxuqY07/lUA0PPZdaer23a9Rh7Xvjnb3BwMJ2dnamqKmvXrs3cuXO3OXf69Olbfe7444/P7bffPhyvBgcHc/7552fPPffMJz/5yVf8vi99kPsLLwZgYpvSOSlPN+lanUObt/rndTQMDg7mqaeeylNPPZUk6e7uzowZM4a3DIpZANBctg0CtNDObiecNWdG6vXm/KA/MOnJHLH4kKZci7Fp5syZWbhwYb73ve8lSVavXp158+Y1fN7VunXrhgPrpk2bcuutt2bhwoVJXlxx1dPTk09/+tO2QrHTZk1v3oNu95g6KVOnTm3a9Zqhr68vv//973PfffflV7/6Ve6888489NBD+cMf/jDqq8QAYDyw8gqgDXZ0JdYxxx2Vn3z/uuyWvUf8PXtmb4kXTGx//dd/nc997nP52te+lmnTpuXCCy8c/r2LL744xx57bN7ylrdk9erVWbly5fBKqWXLluXkk09Oktx00025+eabs//++2f58uVJkkMPPTSf+tSnRuOWGIP2fc2s3HnfpnR2TxvRdaqqytyeKU2aqnX6+vqGg1ZiZRbAWFarthylKGmWdqpVVTVBbx1g9AwODm43Yv33C6/O0w/sNaLrD9UHcsifdubPz3jviK4D0Az9/f35xGVfzea9DhrRdYaeXJP/9u435sA37N+kyUaHmAVQvo0bN6a3tzdHnn5JOrqat4J4pIb6+/Lzb306GzZsSE9Pz2iP0za2DQKMglfaTnjy+47L5kmN3wa3oybt8Wjec9o7RjomQFN0dXXlzQe+NvXndv3JV1W9nn2nPjvmw1VimyEA7CzxCmAUNYpYBy06IAe/aVb668/s0jX7O9bmPX9+3PDb3gBK8P53vyPzNj+Yahef6zd13V35rx98X5OnKoOYBVCwqsBjAhKvAArw8oj1wTNPz/zDBtI/tHOrFPonrc2fvveALP4Ph7doUoBdU6vVcsHZH8zMJ+9MfbB/hz9XVVWm/P43+djpb09vb28LJyyHmAUAW/PMK4ACDQ4OZs2aNfkfV1+bn9z0/zJ5896p1bb//xsGhzanc9bjee9fLM0Riw9r36AAO6mvry/XfON/5o4nJ6W2x2tf8dyhZ57MPtXanP0X78mcvWa3acLyeWYWQOsNP/PqtAKfefXtiffMK/EKoGB9fX257bbb8s2vX5/7f7suzz41KZ313dNRm5yBob5UUzZk9706c9Dh83Pyu4/PlCnlv4ULIEnu/M1vs+qW/5P7123Ksx0zUps+K7XUMvTsxnT3P5nX9EzO0YctzH885k2p1WqjPW7RxCyA5ntpvOqcXE68GhwQrwAo1MDAQB577LHcd999+eUv7simZ57NzD13z8GHLMr06dP9YAeMSUNDQxkaGsqDDz2Ue373QOr1evZ5zbwsfMN+AswIiFkAIydelaVztAcA4NVNnjw58+fPz/z583PccceN9jgATfXGN74xVVVl8+bNefrpp/PMM8/k6aef9nynXdTX1zf83KxEzAJg7BOvAAAYdbVaLd3d3enu7s7s2bPFrCYSswBGoKq2HKUoaZY2Eq8AACiOmNU6YhYAY414BQBA8cSs1hGzACideAUAwJgjZrWOmAXwolq15ShFSbO0k3gFAMCYJ2a1jpgFwGgTrwAAGHfErNYRswBoN/EKAIBxT8xqHTELGNeq549SlDRLG4lXAABMOGJW64hZADSbeAUAwIQnZrWOmAXASIlXAADwMmJW64hZwFhSq285SlHSLO0kXgEAwKsQs1pHzALg1YhXAACwk8Ss1hGzAHg58QoAAEZIzGodMQsYVd42WATxCgAAmkzMah0xC2DiEa8AAKDFxKzWEbMAxj/xCgAA2kzMah0xC2imWrXlKEVJs7STeAUAAKNMzGodMQtg7BOvAACgMGJW64hZAGOPeAUAAIUTs1pHzAJeUVVtOUpR0ixtJF4BAMAYI2a1jpgFUB7xCgAAxjgxq3XELIDRJ14BAMA4I2a1jpgFE4u3DZZBvAIAgHFOzGodMQug9cQrAACYYMZ6zLrssstyyy235LHHHss//dM/Zb/99mt43s9+9rOce+65WbBgwfDXvvrVr6a7uztJcu211+Zf/uVfUlVVFixYkM9+9rOZMWPGNte58MILc+CBB+b0009/1dnELIDmE68AAGCCG2sxa9myZTnjjDNy5plnvuq5f/RHf5S///u/3+brP/3pT3PDDTfka1/7WqZNm5YVK1bkqquuyqc+9ammzipmwRhXPX+UoqRZ2ki8AgAAtlJ6zDriiCNGfI177703hx9+eKZNm5YkOeaYY3LWWWdtN17df//9Ofvss/P4449n3333zaWXXrpL4UnMAth54hUAAPCKSo9Zr+TBBx/M8uXL09HRkZNOOinve9/7kiQHHnhgvvOd72T9+vWZOXNmVq1alU2bNmXDhg3p7e3d5jr33HNPrrrqqkyePDkf+chHsnr16rz97W8f8XxiFsCrE68AAICdMlZi1gEHHJBVq1Zl+vTpWbt2bc4999zsvvvueetb35rFixdn+fLlOe+889LR0ZGlS5cmSTo7G/+ItHTp0uFnZS1atChr1qxpycxiFpTF2wbLIF4BAAAjUmrMmj59+vCv58yZk+OPPz6333573vrWtyZJTj311Jx66qlJkjvuuCNz5swZ3kb4cl1dXcO/7ujoyNDQUAsnf5GYBSBeAQAATVZKzFq3bl1mzpyZSZMmZdOmTbn11ltzyimnbPX7e+65Z/r6+nL11VfnAx/4QMtnGikxC5iIxCsAAKClmh2z/uZv/ib/+q//mvXr1+ecc87J1KlTc/311ydJLr744hx77LF5y1vektWrV2flypXDK6WWLVuWk08+efg655xzTqqqysDAQE488cScfvrpzb71lhOzoMWqastRipJmaaNaVU3QOwcAAIpQyjbD8UjMgl2zcePG9Pb25qgTL0rn5O7RHmfY4EBffrrqM9mwYUN6enpGe5y2sfIKAAAYVaVsMxyPrMwCxgPxCgAAKIqY1TpiFuwcbxssg3gFAAAUTcxqHTELGAvEKwAAYEwRs1pHzAJKJF4BAABjmpjVOmIWE171/FGKkmZpI/EKAAAYV8Ss1hGzgNEgXgEAAOOamNU6YhbQDuIVAAAwoYhZrSNmMd5422AZxCsAAGBCE7NaR8wCmkG8AgAAeAkxq3XELGBXiFcAAACvQMxqHTGL4tWrLUcpSpqljcQrAACAnSBmtY6YBTQiXgEAAIyAmNU6YhaQiFcAAABNJWa1jphF21XPH6UoaZY2Eq8AAABaSMxqHTELJgbxCgAAoI3ErNYRs2B8Eq8AAABGkZjVOmIWI1VLUitoq15ttAcYJeIVAABAQcSs1hGzYGwSrwAAAAomZrWOmAVjg3gFAAAwhohZrSNmsY2q2nKUoqRZ2ki8AgAAGMPErNYRs6AM4hUAAMA4Ima1jpgFo0O8AgAAGMfErNbZ1ZjV19eX97///bnrrruy2267Ze7cubn66qvzute9bptz77jjjnzsYx/L2rVrU6/X8/nPfz7vec97cv/99+fUU0/N0NBQhoaGcsABB2TFihXZY4898sADD2Tx4sVZt25dK29/QqhVhb1tsKBZ2km8AgAAmEDErNZ5pZg1Y8aMdHa++CP4Rz/60Zxwwgmp1Wr50pe+lI9+9KP5wQ9+sNX1nn322bzrXe/K17/+9Rx99NEZHBzMH/7whyTJa17zmvz4xz/O1KlTkyTnnXdeLr744lx++eVtultoH/EKAABgAhOzmue5557LT39yXWq1e9LZ8UQ6O55JvZqUoaHeDAzMyZx5y3LKKR9MT09PTjzxxOHPHXXUUbniiiu2ud4//uM/ZsmSJTn66KOTJJ2dnZk9e3aSZMqUKcPnDQ0N5Zlnnsnuu+++1ec/85nP5IYbbsiGDRty5ZVXbvU9YSwRrwAAABgmZu28qqpyyy3/kK7O7+e97/pDpk+b9LIzNiZ5OGse+b/58t99I/u/4b/kXe8+Ix0dHUmSK6+8MieddNI2173rrrvS3d2dd77znVmzZk0OOeSQfPGLXxwOWP39/fmTP/mTPPjggzn00EPz3e9+d/iz69evz5FHHpmLLrooN954Y84991zxaldUzx+lKGmWNnr5nygAAAAY9kLMmj17dl7/+tfn4IMPzqJFizJ//vzMnDlzwj+kvK+vL//r+gvytqXfyumnbmgQrl702r1r+fBfPpJpUz+XK/72v6avry+XXnpp7r333lxyySXbnD8wMJDvf//7ueaaa3L77bdnn332yTnnnDP8+11dXfnlL3+ZtWvXZuHChbn66quHf2/atGk55ZRTkiRLlizJ7373uybeNbSXlVcAAADsMCuzXjQ0NJQbV30m//nM32TKlNoOf+7Iwwey56x/zmnv+1UefWxzfvjDH2a33Xbb5rwFCxZk6dKl2XvvvZMky5cvb7h6qqurKx/60IfykY98JH/1V3+VZMvztl7Q0dGRoaGhnb09KIZ4BQAAwC6byDHrRzd/Lcv/7K5MmbLzm5pWfe/p3HnXz3LppVdv86yqF5x22mn5yle+ko0bN6anpyc33nhjDj300CTJQw89lFmzZmXatGmp1+v59re/nUMOOWQkt0MDtapKrSpnr15Js7STeAUAAEDTTJSY9eST67PnzB9m1sydD1ePPjqUz160MQsWdOS88z6WSy7520ydOjW33XZbzjzzzJx88sk5+eSTM3/+/FxwwQVZsmRJOjs7s/fee2fFihVJkl//+tc5//zzkyT1ej1HHHFErrzyyqbeI5SiVlUTNNsBAADQduMlZt30g7/LB5ffmM7OHd8u2Midd07Kpv6/zTvecWqTJqMZNm7cmN7e3hxz3GfT2dn96h9ok8HBvtz6o89lw4YN6enpGe1x2sbKKwAAANpmvKzMmtJ174jDVZIsWlTP1//huznxxPemVhv59Wiy+vNHKUqapY3EKwAAAEbNWIxZAwMD2W3qE0273qTaY+nv78+UKVOadk0YT8QrAAAAijEWYtb69eszd86zTbteZ+fG1OsTdEkN7ADxCgAAgGKNhZjVDOJVmbxtsAziFQAAAGNGCTFr1qxZ+fdf7JbkmaZcb3CwJ52dfjyH7fGnAwAAgDFrNGLW5MmT8+xze6VZ8arKPM+7glcgXgEAADButCtm9fXvn4GB32Xy5JG9IfDXd9byhoXvHPE8tEj1/FGKkmZpI/EKAACAcatVMWvx4vfnxh/8OCe9Y9OI5vvJba/PeZ8Qr+CViFcAAABMGM2KWTNnzsrtv1iW9U9en1kzJ+3SLP/7J1Ny2BHnZrfddtulz8NEIV4BAAAwYY0kZh239EP5xjfvyVln/iZTpuzc9sH7H6zlvgffkY9//F1NuAtapqq2HKUoaZY2Eq8AAADgeTsTszo6OnLCiRflmq98Lqe9587Mnbtj3+Pnv5icO+8+MR/7+Be9ZRB2gD8lAAAAsB07ErNOedeluelH30xX5415xwlPZvq0xtsI1zxS5fs37ZP933BWPn7uX2Ty5MltvhsYm8QrAAAA2EHbi1kLFpyfJ574T7n+n7+a+tBd6ex8Ip0dm1Kvahka6k3/wNzMnbcs53zsLzNjxozRvg12UK3acpSipFnaSbwCAACAXfTymHXQQV/IwMBA+vv7MzAwkHq9nqlTp6a7uzuTJu3ag91hohOvAAAAoElqtVq6urrS1dU12qPAuCFeAQAAADTibYNFsGYRAAAAgGKJVwAAAAAUy7ZBAAAAgAZq9S1HKUqapZ2svAIAAACgWOIVAAAAAMWybRAAAACgEW8bLIKVVwAAAAAUS7wCAAAAoFi2DQIAAAA0Uj1/lKKkWdrIyisAAAAAiiVeAQAAAFAs2wYBAAAAGqhVVWoFveGvpFnaycorAAAAAIolXgEAAABQLNsGAQAAABqpqi1HKUqapY2svAIAAACgWOIVAAAAAMWybRAAAACgkSpJfbSHeImJuWvQyisAAAAAyiVeAQAAAFAs2wYBAAAAGqhVVWoFveGvpFnaycorAAAAAIolXgEAAABQLNsGAQAAABqpkpS0Va+gUdrJyisAAAAAiiVeAQAAAFAs2wYBAAAAGqmqwrYNFjRLG1l5BQAAAECxxCsAAAAAimXbIAAAAEAj9SS10R7iJeqjPcDosPIKAAAAgGKJVwAAAAAUy7ZBAAAAgAZqVZVaQW/4K2mWdrLyCgAAAIBiiVcAAAAAFMu2QQAAAIBGqmrLUYqSZmkjK68AAAAAKJZ4BQAAAECxbBsEAAAAaMS2wSJYeQUAAABAscQrAAAAAIpl2yAAAABAI7YNFsHKKwAAAACKJV4BAAAAjFNXXXVVXv/616e7uztHHnlkbr311u2e+6Mf/Si1Wm2b4+67727jxNuybRAAAACgkXqS2mgP8RL1nTv9W9/6Vs4777xcddVVefOb35xrrrkmJ5xwQu66667Mnz9/u5/77W9/m56enuG/nj179q5O3BRWXgEAAACMQ5dffnk+/OEP58wzz8yBBx6YK664Ivvss0++/OUvv+Ln9tprr8ydO3f46OjoaNPEjYlXAAAAAGPIxo0btzo2b968zTn9/f35+c9/nre97W1bff1tb3tb/u3f/u0Vr3/44Ydn3rx5WbZsWW6++eamzr4rxCsAAACABmpVVdyRJPvss096e3uHj89//vPbzL5u3boMDQ1lzpw5W319zpw5efzxxxve77x587JixYqsXLky3/nOd7Jw4cIsW7Yst9xyS/P/5u4Ez7wCAAAAGEMefvjhrZ5JNWXKlO2eW6tt/dCuqqq2+doLFi5cmIULFw7/9ZIlS/Lwww/nC1/4Qo499tgRTr3rrLwCAAAAGEN6enq2OhrFqz333DMdHR3brLJ64okntlmN9UqOOuqo3HvvvSOeeSTEKwAAAIBGqqq8Ywd1dXXlyCOPzE033bTV12+66aa86U1v2uHr3H777Zk3b94On98Ktg0CAAAAjEOf+MQn8oEPfCCLFy/OkiVLsmLFijz00EM566yzkiQXXHBBHnnkkVx77bVJkiuuuCKve93rsmjRovT39+cb3/hGVq5cmZUrV47mbYhXAAAAAOPR6aefnvXr1+eiiy7KY489lj/+4z/OqlWrsmDBgiTJY489loceemj4/P7+/nzyk5/MI488kqlTp2bRokW54YYbcuKJJ47WLSRJalW1E2vOAAAAAMa5jRs3pre3N3+673np7Nj+w9DbbXBoc374uyuyYcOGrR7YPt555hUAAAAAxRKvAAAAACiWZ14BAAAANLKTb/hruZJmaSMrrwAAAAAolngFAAAAQLFsGwQAAABoqLBtgylplvax8goAAACAYolXAAAAABTLtkEAAACARrxtsAhWXgEAAABQLPEKAAAAgGLZNggAAADQSL1KUW/4qxc0SxtZeQUAAABAscQrAAAAAIpl2yAAAABAI1V9y1GKkmZpIyuvAAAAACiWeAUAAABAsWwbBAAAAGikqrYcpShpljay8goAAACAYolXAAAAABTLtkEAAACARupVkoK26tULmqWNrLwCAAAAoFjiFQAAAADFsm0QAAAAoBFvGyyClVcAAAAAFEu8AgAAAKBYtg0CAAAANFKlrK16BY3STlZeAQAAAFAs8QoAAACAYtk2CAAAANCItw0WwcorAAAAAIolXgEAAABQLNsGAQAAABqp15PUR3uKF9ULmqWNrLwCAAAAoFjiFQAAAADFsm0QAAAAoBFvGyyClVcAAAAAFEu8AgAAAKBYtg0CAAAANGLbYBGsvAIAAACgWOIVAAAAAMWybRAAAACgkXqVpKCtevWCZmkjK68AAAAAKJZ4BQAAAECxbBsEAAAAaKCq6qmq+miPMaykWdrJyisAAAAAiiVeAQAAAFAs2wYBAAAAGqmqst7wVxU0SxtZeQUAAABAscQrAAAAAIpl2yAAAABAI1WVpKCterYNAgAAAEBZxCsAAAAAimXbIAAAAEAj9XpSq4/2FC+qCpqljay8AgAAAKBY4hUAAAAAxbJtEAAAAKARbxssgpVXAAAAABRLvAIAAACgWLYNAgAAADRQ1eupCnrbYOVtgwAAAABQFvEKAAAAgGLZNggAAADQiLcNFsHKKwAAAACKJV4BAAAAUCzbBgEAAAAaqVdJraCterYNAgAAAEBZxCsAAAAAimXbIAAAAEAjVZWkPtpTvMi2QQAAAAAoi3gFAAAAQLFsGwQAAABooKpXqQp622Bl2yAAAAAAlEW8AgAAAKBYtg0CAAAANFLVU9bbBguapY2svAIAAACgWOIVAAAAAMWybRAAAACgAW8bLIOVVwAAAAAUS7wCAAAAoFi2DQIAAAA04m2DRRCvAAAAABoYzEBS0GOmBjMw2iOMCvEKAAAA4CW6uroyd+7c/PjxVaM9yjbmzp2brq6u0R6jrWrVRH1UPQAAAMB29PX1pb+/f7TH2EZXV1e6u7tHe4y2Eq8AAAAAKJa3DQIAAABQLPEKAAAAgGKJVwAAAAAUS7wCAAAAoFjiFQAAAADFEq8AAAAAKJZ4BQAAAECxxCsAAAAAiiVeAQAAAFAs8QoAAACAYolXAAAAABRLvAIAAACgWOIVAAAAAMUSrwAAAAAolngFAAAAQLHEKwAAAACKJV4BAAAAUCzxCgAAAIBiiVcAAAAAFEu8AgAAAKBY4hUAAAAAxRKvAAAAACiWeAUAAABAscQrAAAAAIolXgEAAABQLPEKAAAAgGKJVwAAAAAUS7wCAAAAoFjiFQAAAADFEq8AAAAAKJZ4BQAAAECxxCsAAAAAiiVeAQAAAFAs8QoAAACAYolXAAAAABRLvAIAAACgWOIVAAAAAMUSrwAAAAAolngFAAAAQLHEKwAAAACKJV4BAAAAUCzxCgAAAIBiiVcAAAAAFEu8AgAAAKBY4hUAAAAAxRKvAAAAACiWeAUAAABAscQrAAAAAIolXgEAAABQLPEKAAAAgGKJVwAAAAAUS7wCAAAAoFjiFQAAAADFEq8AAAAAKJZ4BQAAAECxxCsAAAAAiiVeAQAAAFAs8QoAAACAYolXAAAAABRLvAIAAACgWOIVAAAAAMUSrwAAAAAolngFAAAAQLHEKwAAAACKJV4BAAAAUCzxCgAAAIBiiVcAAAAAFEu8AgAAAKBY4hUAAAAAxRKvAAAAACiWeAUAAABAscQrAAAAAIolXgEAAABQLPEKAAAAgGKJVwAAAAAU6/8DNDrvzc1K7ycAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Choose a source by tk (preferred)\n", "source_tk = \"5136506604482101815\"\n", "\n", "ax, nodes_tt = ncd.plot_travel_time_from_source(\n", " dfROHR,\n", " TMat=TMat,\n", " map_nodes_tk_ind=map_nodes_tk_ind,\n", " source=source_tk, # or pass an integer matrix index\n", " cmap=\"viridis\",\n", " linewidth_range=(7, 15),\n", " node_size=200,\n", " ttr_norm=\"percentile\", ttr_percentiles=(5, 95),\n", " treat_zero_as_unreachable=True, # hides unreachable nodes; source remains at 0.0\n", " highlight_keys=[source_tk], # star the source (and any others you pass)\n", " highlight_match=\"both\",\n", " colorbar_label=\"Travel time [h]\",\n", " show_axis=False,\n", " show_values=True,\n", " dt_col='dt',\n", " show_edge_dt=True,\n", " annotation_fmt=\"{:.2f}\"\n", ")\n", "\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "d7c1ee50", "metadata": {}, "source": [ "If we compare this plot to the previous one, that used the fluid age calculated by SIR 3S directley, we observe that they the travel time values do not equal the fluid age. The reason for that is that the travel time algorithm uses a Dijkstra algorithm on a graph that has edges that are weighted by the time spent in each pipe. If we now consider the node connected to four pipes in the upper branch. We see that the travel time is lower than the fluid age calculated. As the travel time algorithm does not consider flow this is not unexpected. The travel time algorithm only considers the upper branch for the calculation of the travel time and not the contribution of the lower branch." ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.8" } }, "nbformat": 4, "nbformat_minor": 5 }